Захист від перенапруг
Захист від перенапруг
1 ЗАХИСТ ВІД ПЕРЕНАПРУГ 1.1 Захист електроустановок від грозових та внутрішніх перенапруг. Електроустановки Споживачів повинні мати захист грозових і внутрішніх перенапруг, виконану відповідно до вимогами правил пристрою електроустановок. Лінії електропередачі, КРИЧУ, ЗРУ, розподільні пристрої і підстанції захищаються від прямих ударів блискавки і хвиль грозяних перенапружень, що набігають з лінії електропередачі. Захист будівель ЗРУ і закритих підстанцій, а також розташованих на території підстанцій будівель і споруд (маслогосподарства, електролізною резервуарів з горючими рідинами або газами і тому подібне) виконується в відповідності зі встановленими вимогами. При прийманні після монтажу пристроїв грозозахисту Споживачеві повинна бути передана наступна технічна документація: технічний проект грозозахисту, затверджений в відповідних органах, узгоджений з тією, що енергозабезпечуеться організацією і інспекцією протипожежної охорони; акти випробування вентильних розрядників і нелінійних обмежувачів напруги до і після їх монтажу; акти на установку трубчастих розрядників; протоколи вимірювання опорів заземлення розрядників і громовідводів. У Споживачів повинні зберігатися наступні систематизовані дані: про розстановку вентильних і трубчастих розрядників і захисних проміжках (типи розрядників, відстані до того, що захищається устаткування), а також про відстані від трубчастих розрядників до лінійних роз'еднувачів і вентильних розрядників;про опір заземлювачів опор, на яких встановлені засоби грозозахисту, включаючи троси;про опір грунту на підходах ліній електропередачі до підстанціям;про перетини ліній електропередачі з іншими лініями електропередачі, зв'язки і автоблокування, відгалуженнях від ВЛ лінійних кабельних вставках і про інші місця з ослабленою ізоляцією.На кожне КРИЧУ повинні бути складені контури захисних зон громовідводів, прожекторних щогл, металевих і залізобетонних конструкцій, в зони яких потрапляють відкриті токоведучі частини. Підвіска проводів ВЛ напругою до 1000 В (освітлюваних, телефонних і тому подібне) на конструкціях КРИЧУ, окремо стрижньових громовідводах, що стоять, прожекторних щоглах, димових трубах і градирнях і підведення цих ліній до вказаних споруд а також підведення цих ліній до вибухонебезпечних приміщень не допускаються. Вказані лінії повинні виконуватися кабелями з металевою оболонкою в землі. Оболонки кабелів повинні бути заземлені. Підведення ліній до вибухонебезпечних приміщень повинне бути виконана з обліком вимог інструкції, що діє, по пристрою грозозахисти будівель і споруд. Щорічно перед грозовим сезоном повинна проводитися перевірка стану захисту від перенапружень розподільних пристроїв і ліній електропередачі і забезпечуватися готовність захисту від грозових і внутрішніх перенапружень. У Споживачів повинні реєструватися випадки грозяних відключень і пошкоджень ВЛ, устаткування РУ і ТП. На підставі отриманих даних повинні проводитися оцінка надійності грозозахисти і розроблятися у разі потреби заходи щодо підвищення її надійності. При установці в РУ нестандартних апаратів або устаткування необхідна розробка відповідних грозозахисних заходів. 1.2Вентильні розрядники Вентильні розрядники і обмежувачі перенапружень всієї напруги повинні бути постійно включені. У КРИЧУ допускається відключення на зимовий період (або окремі його місяці) вентильних розрядників, призначених тільки для захисту від грозових перенапружень в районах з ураганним вітром ожеледдю, різкими змінами температури і інтенсивним забрудненням. Профілактичні випробування вентильних і трубчастих розрядників, а також обмежувачів перенапружень винні проводитися відповідно до норм випробувань електроустаткувань. 1.3. Трубчасті розрядники. Трубчасті розрядники і захисні проміжки винні оглядатися при обходах ліній електропередачі. Спрацьовування розрядників наголошується в обхідних листах. Перевірка трубчастих розрядників із зняттям з опор проводиться 1 раз на 3 роки. Верховий огляд без зняття з опор, а також додаткові огляди і перевірки трубчастих розрядників, встановлених в зонах інтенсивного забруднення, повинні виконуватися відповідно до вимогами місцевих інструкцій. Ремонт трубчастих розрядників повинен виконуватися по мірі необхідності залежно від результатів перевірок і оглядів. Огляд засобів захисту від перенапружень на підстанціях повинен проводитися: у установках з постійним чергуванням персоналу в час чергових обходів, а також після кожної грози, що викликала роботу релейного захисту на ВЛ, що відходять; у установках без постійного чергування персоналу - при оглядах всього устаткування. На ВЛ напругою до 1000 В перед грозовим сезоном вибірково по розсуду відповідального за електрогосподарство Споживача повинна перевірятися справність заземлення крюків і штирів ізоляторів, встановлених на залізобетонних опорах, а також арматури цих опор. За наявності нульового дроту контролюється також занулення цих елементів. На ВЛ, побудованих на дерев'яних опорах, перевіряються заземлення і занулення крюків і штирів ізоляторів на опорах що мають захист від грозових перенапружень, а також там, де виконано повторне заземлення нульового дроту. У мережах з ізольованою нейтраллю або з компенсацією ємкісних струмів допускається робота повітряних і кабельних ліній електропередачі із замиканням на землю до усунення пошкодження. При цьому до відшукання місця пошкодження на ВЛ, що проходять в населеній місцевості, де виникає небезпека поразки струмом людей і тварин, слід приступити негайно і ліквідовувати пошкодження в найкоротший строк. За наявності в мережі в даний момент замикання на землю відключення дугогасильних реакторів не допускається. У електричних мережах з підвищеними вимогами за умовами електробезпеки людей (організації гірничорудної промисловості, торфорозробки і т.п.) робота з однофазним замиканням на землю не допускається. У цих мережах всі лінії, що відходять від підстанції, повинні бути обладнані захистами від замикань на землю. У мережах генераторної напруги, а також в мережах, до яким підключені електродвигуни високої напруги, при появі однофазного замикання в обмотці статора машина винна автоматично відключатися від мережі, якщо струм замикання на землю перевищує 5 А. Якщо струм замикання не перевищує 5 А, допускається робота не більше 2 ч, після закінчення яких машина повинна бути відключена. Якщо встановлено, що місце замикання на землю знаходиться не в обмотці статора, по розсуду технічного керівника Споживача допускається робота машини, що обертається, з замиканням в мережі на землю тривалістю до 6 ч. Компенсація ємкісного струму замикання на землю дугогасильними реакторами повинна застосовуватися при ємкісних струмах що перевищують наступні значення: Номінальна напруга мережі, кв 6 10 15 - 20 35 і вище Ємкісний струм замикання на землю, А 30 20 15 10 У мережах напругою 6 - 35 кв з ВЛ на залізобетонних і металевих опорах дугогасильними апарати застосовуються при ємкісному струмі замикання на землю більше 10 А. Робота мереж напругою 6 - 35 кв без компенсації ємкісного струму при його значеннях, що перевищують вказані вище, не допускається. Для компенсації ємкісного струму замикання на землю в мережах повинні використовуватися заземляючі дугогасильні реактори з автоматичним або ручним регулюванням струму. Вимірювання ємкісних струмів, струмів дугогасильні реакторів, струмів замикання на землю і напруги зсуву нейтралі винні проводитися при введенні в експлуатацію дугогасильних реакторів і при значних змінах режимів роботи мережі, але не рідше за 1 раз в 6 років.Потужність дугогасильних реакторів повинна бути вибрана по ємкісному струму мережі з урахуванням її перспективного розвитку. Заземляючі дугогасильні реактори повинні встановлюватися на підстанціях, пов'язаних з мережею, що компенсується, не менше чим двома лініями електропередачі. Установка реакторів на тупикових підстанціях не допускається. Дугогасильні реактори повинні підключатися до нейтралей трансформаторів через раз'єднувачів. Для підключення дугогасильних реакторів, як правило, винні використовуватися трансформатори з схемою з'єднання обмоток "зірка-трикутник". Підключення дугогасильних реакторів до трансформаторів захищеним плавкими запобіжниками, не допускається. Введення дугогасильного реактора, призначене для заземлення повинен бути сполучений із загальним заземляючим пристроєм через трансформатор струму. Дугогасильні реактори повинні мати резонансну настройку. Допускається настройка з перекомпенсацією, при якій реактивна складова струму замикання на землю повинна бути не більше 5 А, а ступінь розладу - не більше 5%. Якщо встановлені у мережі напругою 6 - 20 кв дугогасильні реактори мають велику різниця струмів суміжних відгалужень, допускається настройка з реактивною складовою струму замикання на землю не більше 10 А. У мережах напругою 35 кв при ємкісному струмі менше 15 А допускається ступінь розладу не більше 10%. Застосування настройки з недокомпенсацією допускається тимчасово за умови, що аварійно виникаючі не симетрії ємкостей фаз мережі (наприклад, при обриві дроти) приводять до появи напруги зсуву нейтралі, не що перевищує 70% фазної напруги. У мережах, що працюють з компенсацією ємкісного струму напруга не симетрії повинна бути не вище 0,75% фазного напруга. За відсутності в мережі замикання на землю напруга зсуву нейтралі допускається не вище 15% фазної напруги тривало і не вище 30% протягом 1 ч. Зниження напруги не симетрії і зсуву нейтралі до вказаних значень повинно бути здійснено вирівнюванням ємкостей фаз мережі щодо землі (зміною взаємного положення фазних проводів, розподілом конденсаторів високочастотного зв'язку між фазами ліній).При підключенні до мережі конденсаторів високочастотного зв'язку і конденсаторів грозозахисту машин, що обертаються, повинна бути перевірена допустимість не симетрії ємкостей фаз щодо землі. Пофазниє включення і відключення повітряних і кабельних ліній електропередачі, які можуть приводити до напруги зсуву нейтралі, що перевищує вказані значення, не допускаються.У мережах напругою 6 - 10 кв, як правило, винні застосовуватися плавно регульовані дугогасильні реактори з автоматичною настройкою струму компенсації. При застосуванні дугогасильних реакторів з ручним регулюванням струму показники настройки повинні визначатися по вимірникові розлади компенсації. Якщо такий прилад відсутній, показники настройки повинні вибиратися на підставі результатів вимірювань струмів замикання на землю, ємкісних струмів, струму компенсації з обліком напруги зсуву нейтралі.У установках з вакуумними вимикачами, як правило повинні бути передбачені заходи щодо захисту від комутаційних перенапружень. Відмова від захисту від перенапружень повинна бути обгрунтований. Споживач, що харчується від мережі, що працює з компенсацією ємкісного струму, повинен своєчасно повідомляти оперативний персонал енергосистеми про зміни в своїй схемі мережі для перебудови дугогасильних реакторів. На підстанціях напругою 110 - 220 кв для запобігання виникненню перенапружень від мимовільних зсувів нейтралі або небезпечних ферорезонансних процесів оперативні дії повинні починатися із заземлення нейтралі трансформатора, що включається в ненавантажену систему шин з трансформаторами напруги НКФ-110 і НКФ-220. Перед відділенням від мережі ненавантаженої системи шин з трансформаторами типу НКФ-110 і НКФ-220 нейтраль того, що живить трансформатора повинна бути заземлена. Розподільні пристрої напругою 150 - 220 кв з електромагнітними трансформаторами напруги і вимикачами контакти яких шунтовані конденсаторами, повинні бути перевірені на можливість виникнення ферорезонансних перенапружень при відключеннях систем шин. При необхідності повинні бути прийняті заходи до запобігання ферорезонансним процесам при оперативних і автоматичних відключеннях. У мережах і на приєднаннях напругою 6 - 35 кв у випадку необхідності повинні бути прийняті заходи до запобігання ферорезонансних процесів, зокрема мимовільних зсувів нейтралі. Невживані обмотки нижчої (середнього) напруги трансформаторів і автотрансформаторів повинні бути сполучені в зірку або трикутник і захищені від перенапружень. Захист не потрібний, якщо до обмотки нижчої напруги постійно підключена кабельна лінія електропередачі завдовжки не менше 30 м. У інших випадках захист невживаних обмоток нижчого і середньої напруги повинна бути виконана заземленням однієї фази або нейтралі або вентильними розрядниками або обмежувачами перенапруження, приєднаними до виведення кожної фази. У мережах напругою 110 кв розземленя нейтралі обмоток напругою 110 кв трансформаторів, а також логіка дії релейного захисту і автоматики повинні бути здійснені так, щоб при різних оперативних і автоматичних відключеннях не виділялися ділянки мережі без трансформаторів з заземленими нейтралями. Захист від перенапружень нейтралі трансформатора з рівнем ізоляції нижчі, ніж у лінійних введень, повинна бути здійснена вентильними розрядниками або обмежувачами перенапружень. У мережах напругою 110 кв при оперативних перемиканнях і в аварійних режимах підвищення напруги промислової частоти (50 Гц) на устаткуванні повинно бути в межах значень, приведених в табл. П.4.1 (Додаток 4). Вказані значення розповсюджуються також на амплітуду напруги утвореного накладенням на синусоїду 50 Гц складових інший частоти. 1.4 Захист електронних пристроїв від перенапруг. Для захисту радіоелектронного устаткування традиційно застосовують плавкі запобіжники. Зазвичай в них використовують тонкі неізольовані провідники перетину, що калібрується, розраховані на заданий струм перегорання. Найнадійніше ці пристосування працюють в ланцюгах змінного струму підвищеної напруги. З пониженням робочої напруги ефективність їх застосування знижується. Обумовлено це тим, що при перегоранні тонкого дроту в ланцюзі змінного струму виникає дуга, що розпилює провідник. Граничною напругою, при якій може виникнути така дуга, вважається напруга 30...35 B. При низьковольтному живленні відбувається просто плавлення провідника. Процес цей займає триваліший час, що у ряді випадків не рятує сучасні напівпровідникові прилади від пошкодження. Проте, плавкі запобіжники і понині широко використовують в низьковольтних ланцюгах постійного струму, там, де від них не вимагається підвищена швидкодія. Там, де плавкі запобіжники не можуть ефективно вирішити задачу захисту радіоелектронного устаткування і приладів від струмових перевантажень, їх можна з успіхом використовувати в схемах захисту електронних пристроїв від перенапруження. Принцип дії цього захисту простий: при перевищенні рівня живлячої напруги спрацьовує ступіневий пристрій, що влаштовує коротке замикання в ланцюзі навантаження, в результаті якого провідник запобіжника плавиться і розриває ланцюг навантаження. Метод захисту апаратури від перенапруження за рахунок примусового перепалювання запобіжника, звичайно, не є ідеальним, але набув достатньо широкого поширення завдяки своїй простоті і надійності. При використанні цього методу і вибору оптимального варіанту захисту варто враховувати, наскільки швидкодіючим повинен бути автомат захисту, чи варто перепалювати запобіжник при короткочасних кидках напруги або ввести елемент затримки спрацьовування. Бажано також ввести в схему індикацію факту перегорання запобіжника. Простий захисний пристрій, що дозволяє врятувати радіоелектронну схему, що захищається, показаний на мал. 1. При пробої стабілітрона включається тиристор і шунтує навантаження, після чого перегорає запобіжник. Тиристор повинен бути розрахований на значний, хоча і короткочасний струм. У схемі абсолютно не допустиме використання сурогатних запобіжників, оскільки інакше можуть одночасно вийти з ладу як схема, що захищається, так і джерело живлення, і само захисний пристрій. 2. АНАЛІЗ СПОСОБІВ РЕГУЛЮВАННЯ НАПРУГИ В СИСТЕМАХ ЕЛЕКТРОПОСТАЧАННЯ ДЛЯ ЗАХИСТУ СПОЖИВАЧИВ ЕЛЕКТРИЧНОИ ЕНЕРГИИ. 2.1. Необхідність регулювання напруги в системах електропостачання Основними функціями пристроїв автоматичного регулювання режиму електроенергетичної системи є: - підтримка на заданому рівні частоти в енергосистемі і напруг у вузлових точках як у нормальному, так і в після аварійному режимах, що сприяє підвищенню якості електроенергії. Це забезпечується за рахунок автоматичного регулювання напруги в електричних мережах, а також автоматичного регулювання порушення і частоти синхронних генераторів електричних станцій; - економічно вигідний розподіл активних і реактивних навантажень між паралельно працюючими агрегатами електричних станцій і підтримка оптимального складу працюючих агрегатів з метою забезпечення резерву потужності в системі; - підвищення надійності роботи системи електропостачання шляхом запобігання порушень нормального режиму і прискорення ліквідації виникаючих аварійних ситуацій; - забезпечення безперебійності електропостачання електроприймачів за рахунок рівнобіжної роботи перетворювачів автоматизованих систем гарантованого електропостачання. Автоматизація систем електропостачання усе в більшому ступені починає будуватися на кібернетичних принципах з виробленням законів оптимального керування і використанням керуючих обчислювальних машин. Основу систем електропостачання об'єктів вузлових станцій різного призначення складають широко розгалужені повітряні чи кабельні електричні мережі напругою 35, 10 чи 6 кВ. Через велику довжину цих мереж напруга в споживача, якщо не застосовувати додаткових заходів, буде відрізнятися від номінального плавно регулювати напругу в електричній мережі, а не східчасте, як у випадку застосування конденсаторів і реакторів. Як компенсуючі пристрої можуть застосовуватися також випрямлячі з випереджальним кутом зрушення фаз струму щодо напруги і статичні керовані пристрої, що компенсують, на базі вентильних і феромагнітних елементів. Регулювання напруги в електричній мережі даним способом можливо лише при наявності резерву реактивної потужності в системі. Тому застосування пристроїв, що компенсують, ефективно навіть при наявності інших регулюючих засобів. Як випливає з рис. 1.4,б,в,г, установка пристроїв, що компенсують, як засобів регулювання поблизу електроприймачів одночасно зменшує передану по електромережах реактивну потужність, що приводить до розвантаження електричної станції і мережі, підвищенню коефіцієнта потужності (cos ц2 > cos ц1). При цьому поліпшується економічний режим роботи системи електропостачання, що є великою перевагою розглянутого способу. Автоматизація регулювання напруги в електричних мережах дозволить забезпечити необхідну якість напруги на шинах споживачів і створити необхідні умови для економічної передачі електричної енергії з найменшими витратами реактивної і втратами активної потужності. Це забезпечить, у свою чергу, економію паливно-енергетичних ресурсів. 2.2Системи гарантованого електро постачання Сьогодні можна з упевненістю сказати, що відношення українських споживачів до структури системи гарантованого електроживлення кардинально міняється. Відбувається перехід від рішень з локальними ІБП, в кожній крапці що вимагає резервування до великих систем, що забезпечують комплексний захист всього устаткування. Це, у свою чергу, викликало значне збільшення потужності задіяного в проектах устаткування. Крім того, поступово здійснюється перехід на технологічно досконаліші online-системы. Чинником збільшення попиту на високотехнологічні системи гарантованого енергопостачання стала зміна потреб компаній: ростуть обчислювальні потужності, яким потрібно більше якісного електроживлення, міняється і культура і відношення замовників до даного устаткування в цілому. Якщо раніше акцент робився на захист на рівні «робочих місць» і забезпечення серверної кімнати без особливої уваги до систематизації, то зараз все більше уваги приділяється комплексним системам, що дозволяють вирішувати складні завдання на рівні підприємств. На сьогоднішній день комплексні відмовостійкі системи безперебійного енергоживлення найбільш затребувані в таких областях діяльності: Банки і фінансові інститути: системи гарантованого електропостачання необхідні в банковій сфері для безперебійної роботи платіжних систем і забезпечення безперервного контролю над фінансовими операціями, СГЕ у фінансовій сфері є одним з елементів збереження засобів тисяч клієнтів. Державний сектор: структури, від роботи яких залежить безпека громадян, повинні бути забезпечені захистом від збоїв електроживлення. Серед них - Міністерство Надзвичайних ситуацій, пожежні і рятувальні служби, Міністерство транспорту і зв'язку, Національний банк, служба соціального страхування, пенсійний фонд. Телекомунікаційні компанії: енергетична незалежність телекомунікаційних компаній є заставою їх безперебійної цілодобової роботи, на якій у свою чергу побудована функціональність клієнтських систем, - необхідність в СГЕ в цій галузі очевидна. Дата-центри: цінність інформації визначається її доступністю - саме тоді, коли вона необхідна. Так, щоб не бути залежним від зовнішніх обставин, дата-центри встановлюють собі могутні агрегати безперебійного живлення. Промислові підприємства: безперервну роботу виробничих циклів в різних галузях промисловості використовуючих АСУТП для управління технологічними процесами, може гарантувати тільки автономне енергозабезпечення відповідального об'єкту. Транспорт: транспортні компанії відносяться до ряду відповідальних споживачів електроенергії, оскільки є гарантією стабільної роботи багатьох служб і різних підприємств, саме тому вони не повинні залежати від зовнішніх електросистем. Медичні установи: державні і приватні лікарні, станції переливання крові, пункти невідкладної медичної допомоги - об'єкти, на яких в першу чергу повинні бути виключені проблеми з електроживленням і встановлені системи гарантованого електропостачання В даний час реалізуються дві основні схеми СГЕ: розподілена і централізовано-змішанна. Для всіх об'єктів, що знов будуються або реконструюються, найбільш відповідним рішенням є схема централізовано-змішаного захисту локальних обчислювальних мереж/систем (ЛВС). У випадках, якщо реконструкція системи електропостачання не виконується, або при значних технічних складнощах реалізації схеми централізовано-змішаного захисту як тимчасове рішення допустиме виконання схеми розподіленого захисту. 3ограніченіє перенапружень. Відбувається за рахунок створення шляху стікання зарядів ємкостей здорових фаз на землю через активний опір, включений в нейтраль спеціального приєднувального трансформатора. У роботі передбачається доповнити схему заміщення для точнішого моделювання процесів, що протікають при однофазних замиканнях на землю. Це у свою чергу спричинить збільшення кількості диференціальних рівнянь, але при цьому з'явиться можливість враховувати струми від двигунів власних потреб в місці замикання. Облік впливу двигунів дозволить більш вибрати уставки спрацьовування релейного захисту для її надійної і селективної дії при виникненні пошкодження. Окрім цього наявність в схемі нелінійних елементів, наприклад, оксидно-цинкових активних опорів (ОПН) і вимірювального трансформатора напруги з нелінійною характеристикою, приводить до необхідності обліку їх параметрів, які є функціями від величин, залежних від режиму роботи системи. У програмі ці нелінійні характеристики задаються за допомогою умовних операторів, що реалізовують таким чином кусочно-лінійну апроксимацію. Це не може не привести до деякої погрішності при проведенні досліджень. Тому в роботі також ставиться завдання апроксимації нелінійних характеристик за допомогою методу найменших квадратів, що більшою мірою відповідає фізиці процесів, що протікають в схемі. Проте на цьому перелік невирішених питань не вичерпується, оскільки при виборі режиму нейтралі для кожної конкретної мережі повинні враховуватися її специфічні особливості, зокрема: її параметри, стан ізоляції, категорія споживачів, наявність засобів захисту від замикань на землю, вимоги до електробезпеки і так далі Саме тому з'являються нові перспективи дослідження в роботі. 2.3 СПОСОБИ ПОКРАЩЕНЯ РОБОТИ РОЗПОДІЛЬЧИХ МЕРЕЖ 1. Основною причиною високої ушкоджености електроустаткування в мережах середнього класу напруги є дугові перенапруження, що виникають при переміжному характері горіння дуги в місці пробою фазної ізоляції на землю. 2. Проблема підвищення надійності роботи розподільних мереж напругою 6-10 кв складається з цілого комплексу завдань, ефективне вирішення яких може бути знайдене для кожної конкретної мережі індивідуально з урахуванням характерних її особливостей на основі комбінованого використання засобів релейного захисту, вдосконалення режиму заземлення нейтралі, застосування обмежувачів серії ОПН з різними порогами обмеження і системи швидкого і автоматичного шунтування пошкодженої фази. 3. Ефективне вирішення проблеми підвищення надійності роботи розподільних мереж напругою 6-10 кв може бути знайдено на основі проведення великого об'єму наукових і експериментальних досліджень.Обмеження перенапружень в системі власних потреб здійснюється за рахунок підключення до збірних шин нелінійних оксидно-цинкових активних опорів типу ОПН-КС-6/47. Останні забезпечують глибоке обмеження перенапружень до рівня 2uф. Проте їх недоліком є низька термічна стійкість, оскільки допустимий час роботи складає порядка 2 з в режимі однофазного замикання на землю в мережі 6 кв. У зв'язку з цим запропоновано в ланцюзі нейтралі фазних ОПН, сполучених в зірку (ріс.1), підключити однополюсний вимикач, через який відбувається з'єднання нейтралі ОПН із землею. При цьому між шунтуючими вимикачами Км1-км3 і вимикачем нейтралі ОПН Км0 виконується блокування, яке при включенні будь-якого з шунтуючих вимикачів автоматично відключає вимикач нейтралі Км0 і переводить два послідовно сполучених ОПН на підключення до лінійної напруги, чим обмежується їх час роботи при однофазному замиканні на землю. Придушення перенапружень в мережі з моменту початку горіння дуги до моменту шунтування пошкодженої фази однополюсним контактором (Км1-км3) успішно можна здійснювати обмежувачами перенапружень типу ОПН, включеними по пропонованій схемі (ріс.1) для здійснення термостабільності. Це дозволяє відмовитися від установки в мережі додаткового устаткування (приєднувального трансформатора і бетелових резисторів) і, крім того, реалізація такого технічного рішення обмежує тривалість існування дугових замикань і супутніх ним перенапружень часом порядка 0,5 з до моменту включення шунтуючого контактора. В умовах відсутності в даний час надійних засобів захисту мереж 6кв власних потреб електростанцій від наслідків однофазних замикань на землю, ведеться пошук ефективного вирішення проблеми підвищення надійності роботи електроустаткування, що полягає в оптимізації і управлінні режимом нейтралі мережі для забезпечення максимального обмеження амплітуди і тривалості всіх можливих в експлуатації підвищень напруги і зниження теплових втрат в місці пробою ізоляції. Для вирішення поставленого завдання найбільш раціональним є використання математичної моделі, яка дозволяє оцінити можливий рівень перенапружень в мережі з урахуванням її реальних параметрів, а також ефективність застосування того або іншого технічного рішення. Особливістю моделі є можливість аналізу однофазних глухих і дугових замикань на землю не тільки поблизу збірних шин, але і в індуктивних обмотках двигунів, трансформаторів, а також замикань за наявності зсуву нейтралі, викликаного не симетрією навантаження. На ріс.3 приведена схема заміщення мережі власних потреб електростанції і стрілками показані шляхи протікання струмів в нормальному режимі. Дана мережа представлена зосередженими параметрами: фазними і міжфазними ємкостями і активними опорами, взаємоіндукцією між фазами. Джерело живлення і спеціальний приєднувальний трансформатор включені в схему відповідними фазними індуктівностями розсіяння і активними опорами. Високовольтні двигуни введені в схему заміщення фазними надперехідними індуктівностями розсіяння і активними опорами. У нейтраль приєднувального трансформатора включені струмообмежувальний резистор і реактор. Ланцюг замикання фази на землю в обмотці двигуна імітується ємкістю і активним опором дуги. Схема описується системою диференціальних рівнянь щодо невідомих контурних струмів і напруги у вузлах. У операторній формі ця система має вигляд: Аналіз отриманих результатів дозволяє зробити вивід про те, що наявність особливостей в характері перехідних процесів в мережі з резистивною заземленою нейтраллю, де частотні параметри струму і напруги можуть мінятися в широких межах, може бути причиною того, що широко поширені в даний час в мережах власних потреб електростанцій реле РТЗ-51 (РТЗ-50, РТ-40/0,2) в умовах частих пробоїв, що повторюються, так званих клювків, не встигають успішно спрацювати, і можуть знаходитися в такому стані тривалий час навіть при великих струмах замикання на землю. Хоча і невеликі по величині, але перенапруження, що тривало діють в цьому випадку, можуть викликати пошкодження електроустаткування мережі. Виходячи з викладеного, можна укласти, що резистивне заземлення нейтралі мережі власних потреб електростанцій не виключає можливості пошкодження електроустаткування в умовах нестійкого горіння дуги, що і підтверджується в експлуатації. До недоліків заземлення резистора нейтралі мережі 6 кв слід також віднести низьку термічну стійкість бетелового резистора при його величині 100-400 Ом, оскільки допустима тривалість замикання при цьому не перевищує 1,2 хвилин. Після закінчення цього часу приєднувальний трансформатор, в нейтраль якого включений резистор, повинен бути відключений і мережа переводиться в режим з ізольованою нейтраллю зі всіма властивими нею недоліками. Найпоширенішим в даний час методом запобігання аварійним наслідкам від однофазних замикань в даних мережах є заземлення нейтралі мереж через настроєних індуктивності (ДГК), які, зберігаючи переваги мереж з ізольованою нейтраллю, покликані поліпшити умови роботи електроустаткування при однофазних замиканнях на землю. Таке поліпшення передбачається за рахунок істотного зниження швидкості відновлення напруги на пошкодженій фазі після згасання дуги і зменшення струму в місці замикання на землю до рівня активної складової і вищих гармонік. Внаслідок цього, відбувається мимовільне згасання дуги, а, отже, скорочення об'ємів руйнувань, пов'язаних з термічною дією заземляючої дуги, а також зниженням кратності перенапружень до безпечної величини, оскільки з'являються шляхи для витікання на землю статичних зарядів з ємкості елементів мережі здорових фаз. Проте для досягнення таких результатів ступінь розладу котушки не повинен перевищувати меж . При установці в мережах 6-35 кв котушки знижується швидкість відновлення напруги на хворій фазі після згасання дуги. При точній настройці котушки в резонанс час відновлення напруги до номінального складає декілька секунд. За цей час міцність ізоляції в місці пошкодження встигає відновитися. Але цей процес має і негативні сторони, тому що весь цей час на здорових фазах тримається напруга порядку (1,9-2,3) Uф. Відносна тривалість існування таких перенапружень може привести до пробою ізоляції в цих фазах, особливо в старих мережах з поганою ізоляцією. У реальних мережах набудувати котушку точно в резонанс неможливо, оскільки індуктивність котушки регулюється дискретно. Допускається розлад котушки v<5% . При розладі в 5% напруга, що відновлюється, на пошкодженій фазі має характер биття. Що огинає напругу досягає максимуму, 1,78uф, що становить. Що надалі огинає напругу прагне до Uф. Міцність ізоляції до моменту максимуму биття може відновитися, але напруга 1,78uф на хворій фазі може викликати повторний пробій ізоляції з подальшою кратністю перенапружень 2,89uф. При розладі більше 25% кратність перенапружень така ж, як в мережах без установки дугогасильної котушки. При цьому кратність перенапружень при перекомпенсації трохи менше, ніж при недокомпенсації. За наявності не симетрії настройка встановленою в мережі ДГК в резонанс веде до різкого збільшення напруги зсуву нейтралі в нормальному режимі роботи мережі. Причому не симетрія ємкостей фаз щодо землі сильніше впливає на величину зсуву нейтралі, чим не симетрія активних опорів ізоляції. На основі проведених досліджень кафедрою "Електричні станції" Донецького національного технічного університету було запропоновано для усунення виявлених недоліків, викликаних зсувом нейтралі мережі і тривалим існуванням підвищеної напруги в режимах замикання фази на землю, паралельно ДГК підключити через контактор резистор. Опір резистора вибирається таким, щоб напруга не симетрії не перевищувала допустимого, а величина і тривалість перенапружень були мінімальними. Для того, щоб резистор не перегрівався великими струмами при стійкому однофазному замиканні він відключається за допомогою контактора з витримкою часу 0,5 з при перевищенні напруги нульової послідовності 20% від номінального. Зі всієї різноманітності напрямів роботи по вдосконаленню системи компенсації ємкісних струмів на землю до практичної реалізації виявилися прийнятними і набули широкого поширення ДГК типу ЗРОМ із ступінчастим регулюванням індуктивності котушки і плунжерні ДГК з плавним регулюванням індуктивності. У першому випадку регулювання здійснюється шляхом перемикання відгалужень на робочій обмотці ДГР. Крок регулювання по струму для таких апаратів складає не менше 10% від повного струму котушки. Перемикання відпаювань проводиться тільки уручну при повністю знятій напрузі. Отже, в сучасних умовах дефіциту потужності і наявності графіка аварійного відключення електроприймачів при використанні таких ступінчасто регульованих дугогасильних апаратів виникнення значних розладів компенсації є неминучим. У другому випадку регулювання ДГК здійснюється за рахунок плавної зміни величини повітряного зазору між рухомими частинами магнітопровода (плунжерами). Такі котушки володіють лінійною характеристикою, що намагнічує, у всіх режимах роботи мережі. Експлуатуються, як правило, в блоці з пристроями автоматичного регулювання компенсації і забезпечують швидкість регулювання по струму в межах 0,25-2 А/с. Як регулятори використовують беспошукові, виготовлені, як правило, кустарним способом пристрої, засновані на принципі фазового автопідстроювання частоти контура нульової послідовності і робочої напруги мережі. Регулятори не мають системи контролю виходу об'єкту регулювання в область резонансу і не мають зворотного зв'язку по ступеню настройки котушки. Якщо врахувати, що точність настройки значною мірою залежить від сумарної ємкості всієї мережі, тривалих і випадкових змін стану ізоляції електроустаткування, великої кількості можливих параметричних обурюючих чинників і т. д., які вимагають періодичного втручання обслуговуючого персоналу в систему регулювання, то стає очевидним, що в умовах експлуатації контроль ступеня настройки котушки значно утруднений, а висока точність настройки мало вірогідна. Пропонується також підвищення надійності роботи мереж власних потреб 6 кв електростанцій за рахунок перекладу всіх власних потреб однофазних замикань, що виникають в системі, на землю в глухі замикання. Для цієї мети слід підключити між збірними шинами 6 кв і землею три однополюсні вимикачі з індивідуальним приводом і управлінням (ріс.2). При виникненні будь-якого виду однофазного замикання на землю за допомогою вуст Мал. 1. Простий захист від перенапруження Мал. 2. Перешкодозахисна схема захисту навантаження від перевищення напруги Вдосконалена схема захисту навантаження від перевищення напруги, доповнена резистором і конденсатором, показана на мал. 2. Резистор обмежує граничний струм через стабілітрон і перехід тиристора, що управляє, конденсатор знижує вірогідність спрацьовування захисту при короткочасних кидках живлячої напруги. Наступний пристрій (мал. 3) захистить радіоапаратуру від виходу з ладу при випадковій переполюсовці або перевищенннапруга живлення, що нерідко буває при несправності генератора в автомобілі. При правильній полярності і номінальній напрузі живлення діод Vd1 і тиристор Vs1 закриті, і струм через запобіжник Fu1 поступає на вихід пристрою. Мал. 3. Схема захисту радіоапаратури з індикацією аварії Якщо полярність зворотна, то діод Vd1 відкривається, і згорає запобіжник Fu1. Лампа El1 спалахує, сигналізуючи про аварійне підключення. При правильній полярності, але вхідній напрузі, що перевищує встановлений рівень, що задається стабілітронами Vd2 і Vd3 (в даному випадку - 16 Би), тиристор Vs1 відкривається і замикає ланцюг деякі, що викликає перегорання запобіжника і запалення аварійної лампи El1. Запобіжник Fu1 повинен бути розрахований на максимальний струм, споживаний радіоапаратурою. Елементи ГТЛ-логики зазвичай працездатні у вузькому діапазоні живлячої напруги (4,5...5,5 B). Якщо аварійне зниження живлячої напруги не так небезпечно для «здоров'я» мікросхем, то підвищення цієї напруги досконале неприпустимо, оскільки може привести до пошкодження всіх мікросхем пристрою. На мал. 4 приведена проста і досить ефективна схема захисту 7777-устройств від перенапруження. Спосіб захисту гранично простий: як тільки живлячу напругу перевищить рівень, що рекомендується, всього на 5% (тобто досягне величини 5,25 Би) спрацює ступіневий пристрій і включиться тиристор. Через нього починає протікати струм короткого замикання, який перепалює плавкий запобіжник Fu1. Зрозуміло, як запобіжник не можна використовувати сурогатні запобіжники, оскільки у такому разі може вийти з ладу блок живлення, що захищає схему тиристор, а потім і мікросхеми, що захищаються. Недоліком пристрою є відсутність індикації перегорання запобіжника. Мал. 4. Схема захисту мікросхем ТТЛ від перенапруження Мал. 5. Схема пристрою захисту від перенапруження, що працює на змінному і постійному струмі
Страницы: 1, 2
|