Сопротивление материалов
Сопротивление материалов
4. 'Стрелки' section. 'Стрелки' sectionArrow Table |
1. Введение и основные понятия Ключевые слова: Прочность. Жесткость. Устойчивость. Надежность. Деформирование. Ресурс. Отказ. Постановка задачи. Прикладная механика - это наука, интегрирующая, с одной стороны циклы общеобразовательных дисциплин таких как: физика, математика, теоретическая механика, материаловедение, инженерная графика, а с другой стороны - это первая инженерная дисциплина, которая преподается студентам технических специальностей. Прикладная механика, в принципе, охватывает две дисциплины: сопротивление материалов и основы конструирования. Ниже излагается цикл лекций по прикладной механике с расстановкой акцентов на наиболее сложно воспринимаемой части курса - сопротивлению материалов. Сопротивление материалов - наука о прочности, жесткости и надежности элементов инженерных конструкций. Методами сопротивления материалов ведутся практические расчеты и определяются необходимые, как говорят, надежные размеры деталей машин, различных конструкций и сооружений. Основные понятия сопротивления материалов опираются на законы и теоремы общей механики и в первую очередь на законы статики, без знания которых изучение данного предмета становится практически невозможным. В отличие от теоретической механики сопротивление материалов рассматривает задачи, где наиболее существенными являются свойства деформируемых тел, а законы движения тела, как жесткого целого, не только отступают на второй план, но в ряде случаев являются попросту несущественными. Сопротивление материалов имеет целью создать практически приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в ряде случаев прибегать к упрощающим гипотезам - предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом. Необходимо отметить, что первые заметки о прочности упоминаются в записках известного художника ЛЕОНАРДО Де ВИНЧИ, а начало науки о сопротивлении материалов связывают с именем знаменитого физика, математика и астронома ГАЛИЛЕО ГАЛИЛЕЯ. В 1660 году Р.ГУК сформулировал закон, устанавливающий связь между нагрузкой и деформацией: "Какова сила - таково и действие". В XVIII веке необходимо отметить работы Л.ЭЙЛЕРА по устойчивости конструкций. XIX - XX века являются временем наиболее интенсивного развития науки в связи с общим бурным ростом строительства и промышленного производства при безусловно огромном вкладе ученых-механиков России. Итак, мы будем заниматься твердыми деформированными телами с изучением их физических свойств. Введем основные понятия, принимаемые при изучении дисциплины. Прочность - это способность конструкции выдерживать заданную нагрузку, не разрушаясь. Жесткость - способность конструкции к деформированию в соответствие с заданным нормативным регламентом. Деформирование - свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил Устойчивость - свойство конструкции сохранять при действии внешних сил заданную форму равновесия. Надежность - свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени. Ресурс - допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции. Отказ - нарушение работоспособности конструкции. Опираясь на вышесказанное, можно дать определение прочностной надежности. Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции. На рис.1 приведена структура модели прочностной надежности. Она включает известные модели или ограничения, которые априорно накладываются на свойства материалов, геометрию, формы изделия, способы нагружения, а также модель разрушения. Инженерные модели сплошной среды рассматривают материал как сплошное и однородное тело, наделенное свойством однородности структуры. Модель материала наделяется свойствами упругости, пластичности и ползучести. Упругостью называется свойство тела восстанавливать свою форму после снятия внешних нагрузок. Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию. Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках. Основными моделями формы в моделях прочностной надежности, как известно, являются: стержни, пластины, оболочки и пространственные тела (массивы) (рис.2). Модели нагружения содержат схематизацию внешних нагрузок по величине, характеру распределения (сосредоточенная или распределенная сила или момент), а также воздействию внешних полей и сред. После обоснованного выбора моделей формы, материала, нагружения переходят к непосредственной оценке надежности с помощью моделей разрушения. Модели разрушения представляют собой уравнения, связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность. Эти уравнения (условия) называют условиями прочности. Обычно рассматриваются в зависимости от условий нагружения четыре модели разрушения: статические, длительно статические, малоцикловые, усталостные. Как уже отмечалось, изучение дисциплины невозможно без знания основ теоретической механики. Поэтому свой остаточный ресурс знаний рекомендую проверить по разделу "Статика", используя систему входных тестов. Поскольку изучение сопротивления материалов базируется прежде всего на таких известных понятиях как сила, пара сил, связи, реакции в связях, равнодействующая система внешних сил, то… Вам рекомендуется решить простые задачи, указанные в ПРИЛОЖЕНИИ под разделом Т-1. 2. Метод сечений для определения внутренних усилий Ключевые слова: Внешние силы. Внутренние усилия (силовые факторы). Следящая система координат. Нормальная сила. Внутренние крутящие и изгибающие моменты. Поперечная сила. Деформации рассматриваемого тела (элементов конструкции) возникают от прохождения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод Разреза). Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) - это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия - это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле. На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил: (1) При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела: , (2) , , где х0, у0, z0 - базовая система координат осей. Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S'} и {S"}- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий. При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением: Так как исходная система внешних сил (1) эквивалентна нулю, получаем: {S'} = -{S"} (3) Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия. Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А', точку С', систему внутренних усилий для левой части {S'} сводим к главному вектору и главному моменту внутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сечения А" определяется, соответственно, точкой С" (Рис.1 б,в). {S'} ~ {R',L'0}; {S"} ~ {R",L"0} (4) Здесь в соответствие с четвертой аксиомой статики по-прежнему имеют место следующие соотношения:
R' = -R" (5) L'0 = -L"0 Таким образом, главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части. График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций. Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб. В центрах масс исследуемых сечений С' или С" зададимся соответственно левой (с', х', у', z') или правой (с", х", у", z") системами координатных осей (рис.1 в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 ? х'1 ? а, а ? x'2 ? b и т.д., где 0, а и b - линейные размеры границ исследуемых участков бруса. Зададимся положительными направлениями проекций главного вектора или и главного момента или на координатные оси следящей системы (рис.1 б, в): {N', Q'y, Q'z}, {M'x, M'y, M'z} (6) {N", Q"y, Q"z}, {M"x, M"y, M"z} При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом: Nx - нормальная сила, признак центрального растяжения или сжатия; Мx - внутренний крутящий момент, возникает при кручении; Qz, Qу - поперечные или перерезывающие силы - признак сдвиговых деформаций, Му, Мz - внутренние изгибающие моменты, соответствуют изгибу. Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде: {P1, P2, P3, ... , N', N", Q'y, Q"y, Q'z, Q"z, M'x, M"x, M'y, M"y, M'z, M"z, ... , Pn-1, Pn} ~ 0 (7) С учетом эквивалентности нулю исходной системы сил (1) имеет место: {N', N", Q'y, Q"y, Q'z, Q"z, М'x, M"x, M'y, M"y, М'z, M"z}~0 (8) Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю: {N', N"} ~ 0 > N' = -N" {Q'y, Q"y} ~ 0 > Q'y = -Q"y {Q'z, Q"z} ~ 0 > Q'z = -Q"z {М'x, M"x} ~ 0 > М'x = -M"x {M'y, M"y} ~ 0 > M'y = -M"y {М'z, M"z} ~ 0 > М'z = -M"z (9) Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой. Эти перемещения могут наблюдаться при разрушении тела по этому сечению. Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид; ix = N + P1x + P2x + ... + Pkx = 0 ? N iy = Qy + P1y + P2y + … + Pky = 0 ? Qy iz = Q + P1z + P2z + ... + Pkz = 0 ? Qz x(Pi) = Mx + Mx(Pi) + ... + Mx(Pk) = 0 ? Mx y(Pi) = My + My(Pi) + ... + My(Pk) = 0 ? My z(Pi) = Mz + Mz(Pi) + ... + Mz(Pk) = 0 ? Mz (10) Здесь для простоты обозначений системы координат с' х' у' z' и с" х" у" т" заменены единой оxуz. Уважаемые коллеги! Таким образом, механизм предложенного автором лекций метода построения эпюр внутренних усилий, освобождающий Вас от механического запоминания "правил знаков" при построении эпюр внутренних усилий, заключается в следующем: Определите реакции в связях по величине и направлению в базовой системе координат. Определите количество участков бруса для использования метода сечений. Мысленно рассеките брус в пределах исследуемого участка и изобразите на Ваше усмотрение левую или правую условно отсеченную часть. Укажите пределы изменения положения сечения вдоль продольной оси в базовой системе координат на этом участке. Введите в искомом сечении соответственно левую или правую следящую систему координатных осей. Задайтесь положительными направлениями внутренних усилий в следящей системе координат. Составьте уравнения равновесия для рассматриваемой условно отсеченной части бруса в следящей системе координат. Определите из уравнений равновесия искомые внутренние усилия. Вычислите искомые внутренние усилия на границах участков и при необходимости, - их экстремальные значения. Выбрав масштаб усилий, выполните построение эпюры в соответствие с полученными их модульными значениями и знаками. Указанная последовательность действий (кроме п.1) составляет суть метода сечений (разреза), единственного метода для определения внутренних усилий. Не забываем, что при распределенной нагрузке в соответствие с теоремой Вариньона векторный момент равнодействующей рассматриваемой системы сил относительно любой точки равен сумме векторных моментов всех сил этой системы относительно той же точки. Эпюры внутренних усилий позволяет визуально найти положение опасного сечения, где действуют наибольшие по модулю внутренние усилия. В этом сечении при прочих равных условиях наиболее вероятно разрушение конструкции при предельных нагрузках. 3. Эпюры внутренних усилий при растяжении-сжатии и кручении Ключевые слова: Нормальное сечение. Нормальная сила. Внутренний крутящий момент. Эпюры внутренних усилий при растяжении-сжатии Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила. Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q, (рис.1). Пусть . Прежде всего определим опорную реакцию R, задавшись ее направлением вдоль оси х. Брус имеет 2 участка и . В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие, допустим левой части, введя следующую координату х1, рис.1 б: Следовательно, в пределах первого участка брус претерпевает сжатие постоянной нормальной силой. Аналогично поступим со вторым участком. Мысленно рассечем его сечением 2-2, и рассмотрим равновесие левой части (рис.1 в).Установим предварительно границы изменения х2: Подставляя граничные значения параметра х2, получим: Таким образом, в пределах второго участка брус растянут и нормальная сила изменяется по линейному закону. Аналогичный результат получается и при рассмотрении правой отсеченной части (рис.1 г): На основе полученных данных строится эпюра нормальных сил в виде графика распределения нормальной силы по длине бруса (рис.1 д). Характерно, что скачки на эпюре обусловлены наличием в соответствующих сечениях сосредоточенных сил R и Р. Эпюры внутренних усилий при кручении Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент. Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2. Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии. В исходных сечениях № 1,2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml. Для первого участка (рис.2 б): Для второго участка (рис.2 в): Для третьего участка (рис.2 г): Границы измерения параметра х3 в следующей системе координат: Тогда: Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д). 4. Эпюры внутренних усилий при прямом изгибе Ключевые слова: поперечная сила. Внутренний изгибающий момент. Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки. Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент. Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1, а, но… Предварительно рекомендую Вам вспомнить из раздела "Статика" теоретической механики методы расчета реакций в связях на примерах тестов, приведенных в ПРИЛОЖЕНИИ по разделом Т-2. Прежде всего вычислим реакции в связи на базе уравнений равновесия: После мысленного рассечения балки нормальным сечением 1-1 рассмотрим равновесие левой отсеченной части (рис.1, б), получим: Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону. Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1, в. А именно: На основании полученных значений строятся эпюры поперечных сил (рис.1, г) и внутренних изгибающих моментов (рис.1, д). Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме. Продифференцируем выражение внутреннего изгибающего момента по координате х: Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? - Закономерность. Дифференциальные зависимости между внутренними усилиями при изгибе Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2). Составим уравнение равновесия: Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении. Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты: и М убывает от 0 до -Pl. и М ? х. Таким образом, для квалифицированной проверки Вам рекомендуется вспомнить из высшей математики раздел, связанный с вычислением производных функции. Считаю целесообразно решить тесты, приведенные в ПРИЛОЖЕНИИ под разделом Т-3. Рассмотрим ВТОРОЙ ХАРАКТЕРНЫЙ ПРИМЕР ИЗГИБА двухопорной балки (рис.3). Очевидно, что опорные реакции RA = RB: для первого участка (рис.3, б) для второго участка (рис.3, в) Эпюры внутренних усилий представлены соответственно на рис.3, г и 3, д. На основе дифференциальной связи Q и М, получим: для первого участка: Q > 0 и М возрастает от нуля до . Q = const и M ? x для второго участка: Q < 0 и М убывает с до нуля. Q = const и M также пропорционален х, т.е. изменяется по линейному закону. Опасным в данном примере является сечение балки в центре пролета: Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4, б) выражения для внутренних усилий приобретают вид: На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты х0 (рис.3 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим После подстановки в выражение изгибающего момента получим: Таким образом, . Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться "быстрому" построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ под грифом Т-4. 5. Понятие о напряжениях и деформациях Ключевые слова: нормальное и касательное напряжения, линейная и угловая деформации, тензор напряжений. Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n. В окрестности этой точки выделим малую площадку ?F. Главный вектор внутренних сил, действующих на этой площадке, обозначим через ?P (рис. 1, а). При уменьшении размеров площадки соответственно уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при ?F?0 получим Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки ?F, характеризуемой вектором n. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора n определяет напряженное состояние в этой точке. В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали n. Проекция вектора рn на направление вектора n называется нормальным напряжением sn, а проекция на плоскость, проходящую через точку М и ортогональную вектору n, - касательным напряжением ?n (рис. 1 б). Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2. При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела. Отнесем недеформированное тело к декартовой системе координат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М', характеризуемое радиус-вектором r' (х, у, z). Вектор u=r'-r называется вектором перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений u(х, у, z), v(х, у, z), w(х, у, z), равные разности декартовых координат точки тела после и до деформации. Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткое целое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек. Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации. Рассмотрим, например, точку М и близкую к ней точку N, расстояние между которыми в недеформированном состоянии вдоль направления вектора s обозначим через ?s (рис. 2). В деформированном состоянии точки М и N переместятся в новое положение (точки М' и N'), расстояние между которыми обозначим через ?s'. Предел отношения называется относительной линейной деформацией в точке М в направлении вектора s. Рассматривая три взаимно перпендикулярных направления, например, вдоль координатных осей Ох, Оу и Oz, получим три компоненты относительных линейных деформаций ex, ey, ez, характеризующих изменение объема тела в процессе деформации. Для описания деформаций, связанных с изменением формы тела, рассмотрим точку М и две близкие к ней точки N и Р, расположенные в недеформированном состоянии в направлении двух взаимно ортогональных векторов s1 и s2. Расстояния между точками обозначим через ?s1 и ?s2 (рис. 4). В деформированном состоянии положение точек обозначим через М', N' и Р'. Угол между отрезками M'N' и М'Р' в общем случае будет отличным от прямого. При ?s1?0, ?s2?0 изменение угла ?12 между двумя ортогональными до деформации направлениями называется угловой деформацией. Как видно из рис. 4, угловая деформация складывается из двух углов ?1 и ?2, связанных с поворотами отрезков M'N' и М'Р' в плоскости, образованной векторами s1 и s2, относительно этих векторов. Если заданы три взаимно ортогональных вектора, направленных вдоль координатных осей, то имеются три угловые деформации ?xy, ?xz и ?yz, которые вместе с тремя линейными деформациями ex, ey и ez полностью определяют деформированное состояние в точке. Напряженное состояние в точке. Тензор напряжений Вектор напряжений pn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи некоторые свойства, не характерные для векторов. В частности, величина и направление вектора напряжений зависят от ориентации вектора n нормали бесконечно малого элемента поверхности dF. Совокупность всех возможных пар векторов n, рn в точке определяет напряженное состояние в данной точке. Однако для полного описания напряженного состояния в точке нет необходимости задавать бесконечное множество направлений вектора n, достаточно определить векторы напряжений на трех взаимно перпендикулярных элементарных площадках. Напряжения на произвольно ориентированных площадках могут быть выражены через эти три вектора напряжений. В дальнейшем лектор умышленно меняет ориентацию координат. Так, что ось Z - продольная ось бруса, а X и Y - координаты любой точки его поперечного сечения. Проведем через точку М три взаимно перпендикулярных плоскости с векторами нормалей, направления которых совпадают с направлениями координатных осей. Элементарные площадки образуем дополнительными сечениями, параллельными исходным плоскостям и отстоящими от них на бесконечно малые расстояния dx, dy, dz. В результате в окрестности точки М получим бесконечно малый параллелепипед, поверхность которого образована элементарными площадками dFх=dydz, dFн=dxdz, dFя=dxdy. Векторы напряжений px, py, pz, действующие на элементарных площадках, показаны на рис. 5. Разложим каждый вектор напряжений на составляющие вдоль координатных осей (рис. 6). На каждой площадке действует одно нормальное напряжение ?x, ?y, ?z, где индекс обозначает направление вектора нормали к площадке и два касательных напряжения ? с двумя индексами, из которых первый указывает направление действия компоненты напряжения, второй-направление вектора нормали к площадке. Совокупность девяти компонент напряжений (по три на каждой из трех взаимно перпендикулярных площадок) представляет собой некоторый физический объект, называемый тензором напряжений в точке. Тензор можно представить в виде матрицы, соответствующим образом упорядочив девять компонент: Для компонент тензора напряжений общепринятым является следующее правило знаков: компонента считается положительной, если на площадке с положительной внешней нормалью (т. е. направленной вдоль одной из координатных осей) эта компонента направлена в сторону положительного направления соответствующей оси. На рис. 6 все компоненты тензора напряжений изображены положительными. На площадках с отрицательной внешней нормалью (грани параллелепипеда, не видимые на рис. 5 и 6) положительная компонента направлена в противоположном направлении. Напряжения на трех взаимно ортогональных площадках с отрицательными направлениями нормалей также характеризуют напряженное состояние в точке. Эти напряжения, являющиеся компонентами тензора напряжений , определяются аналогично напряжениям на площадках с положительной нормалью. Они обозначаются теми же символами и имеют положительное направление, обратное изображенному на рис. 6. 6. Свойства тензора напряжений. Главные напряжения Ключевые слова: шаровый тензор напряжений, инвариантность, характеристическое уравнение, девиатор. Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Так как тело находится в равновесии, следовательно, находится в равновесии любая его часть, в том числе и элементарный объем. Запишем одно из шести уравнений равновесия этого объема, а имен но - сумму моментов всех сил относительно оси Ох. Все силы, кроме двух, либо не создают момента относительно ocи Ох, либо взаимно уничтожаются. Отличные от нуля моменты создают компоненты ?yz (верхняя грань) и ?zy (правая грань): После сокращения на элемент объема dV=dxdydz получим Аналогично, приравнивая нулю сумму моментов всех сил относительно осей Оу и Оz, получим еще два соотношения Эти условия симметрии и тензора напряжений называются также условиями парности касательных напряжений: касательные напряжения, действующие по двум взаимно перпендикулярным площадкам в направлениях, ортогональных ребру, образованному пересечением этих площадок, равны по величине. С учетом этих свойств из девяти компонент тензора напряжений независимыми оказываются шесть компонент. Покажем теперь, что компоненты тензора напряжений определенные для трех взаимно перпендикулярных площадок, полностью характеризуют напряженное состояние в точке, т. е. позволяют вычислить компоненты вектора напряжений на площадках, произвольно ориентированных относительно выбранной системы координат. Для этого рассмотрим элементарный объем, образованный сечением параллелепипеда, изображенного на рис. 1, плоскостью, пересекающей координатные оси и имеющей единичный вектор нормали n с компонентами nx, ny, nz. На гранях полученного таким образом бесконечно малого тетраэдра действуют напряжения, показанные на рис. 1. При этом вектор напряжений pn на наклонной площадке разложен па составляющие рx, рy, рz вдоль координатных осей. Площади граней, ортогональных координатным осям и вектору нормали, обозначим соответственно dFx, dFy, dFz, dF. Эти площади связаны между собой соотношениями dFx=dFnx, dFy=dFny, dFz=dFnz (1) вытекающими из того, что грани, ортогональные координатным осям, есть проекции наклонной площадки на соответствующую координатную плоскость. Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема. Например, проекции всех поверхностных сил на ось Ох дают С учетом соотношений (1) после сокращения на dF получим уравнение, связывающее проекцию рx вектора напряжений с соответствующими компонентами тензора напряжений. Объединяя это уравнение с двумя аналогичными уравнениями, полученными проектированием сил на оси Оy и Оz, приходим к следующим соотношениям (2) носящим название формул Коши. Эти формулы определяют вектор напряжений на произвольно выбранной площадке с вектором n через компоненты тензора напряжений. Формулы (2) позволяют вычислить через компоненты тензора напряжений полное напряжение (3) нормальное напряжение (4) и касательное напряжение: Среди всех возможных направлений вектора нормали n существуют такие направления, для которых вектор напряжений pn параллелен вектору n. На соответствующих площадках действуют только нормальные напряжения, а касательные напряжения отсутствуют. Такие площадки называются главными, а нормальные напряжения на этих площадках называются главными напряжениями. Пусть площадка с единичным вектором нормали является главной. Условия коллинеарности векторов pn и n есть условия пропорциональности их компонент: С учетом формул Коши получим систему линейных однородных уравнений относительно неизвестных компонент nx, ny, nz вектора нормали к главной площадке Эта система уравнений имеет ненулевое решение, если определитель, составленный из коэффициентов уравнений, обращается в нуль: Раскрывая определитель, приходим к кубическому уравнению относительно главного напряжения ? Здесь введены обозначения Уравнение (3) называется характеристическим уравнением для тензора напряжений. Коэффициенты (4) этого уравнения называются инвариантами тензора напряжений. Решение кубического уравнения (3) имеет три вещественных корня s1, s2, s3, которые обычно упорядочиваются s1 ? s2 ? s3. Каждому значению ?j (j=1, 2, 3) соответствует вектор nj, характеризующий положение j-й главной площадки, с компонентами nj1, nj2, nj3. Для нахождения этих компонент достаточно в уравнения подставить найденное значение ?j и решить любые два из этих уравнений совместно с условием нормировки (5) Главные напряжения обладают важным свойством: по сравнению со всеми другими площадками нормальные напряжения на главных площадках принимают экстремальные значения. Для доказательства этого свойства достаточно исследовать на экстремум нормальное напряжение как функцию nx, ny, nz при дополнительном ограничении (5). Можно показать, что три главные площадки, соответствующие главным напряжениям s1, s2, s3, взаимно перпендикулярны или, что то же самое, векторы nj и nk, соответствующие различным значениям j и k - ортогональны. Условие ортогональности имеет вид
Страницы: 1, 2
|