Обработка заготовок на токарных станках
Обработка заготовок на токарных станках
Тольяттинский Государственный Университет Кафедра «Технология машиностроения» РЕФЕРАТпо дисциплине«Технологические процессы машиностроительного производства»на тему:«Обработка заготовок на токарных станках».Студенты: Костина Д.В.Константинова Е.Е.Группа: М-102Преподаватель: Логинова Л.А.Тольятти 2003 годСодержание:1. Токарная обработка 2. Классификация токарных станков 3. Сущность обработки металлов резанием 4. Режущий инструмент. Геометрические параметры режущего инструмента 5. Инструментальные материалы 6. Образование стружки и сопровождающие его явления 7. Режимы резания при точении 8. Тепловые явления при резании металлов 9. Изнашивание режущих инструментов 10. Влияние смазочно-охлаждающей жидкости на процесс резания 11. Жесткость и вибрации системы станок - приспособление - инструмент - деталь 12. Шероховатость. Точность обработки 13. Паспорт токарного станка 14. Кинематика и узлы токарного станка 15. Автоматизация и механизация токарной обработки 16. Вклад отечественной науки в исследование процессов резания металлов Список литературы 1. Обработка заготовок на токарных станках (Влияние геометрии инструмента на процесс резания. Инструментальные материалы для лезвийного инструмента. Совершенствование токарной обработки) Токарная обработка (точение) - наиболее распространенный метод изготовления деталей типа тел вращения (валов, дисков, осей, пальцев, цапф, фланцев, колец, втулок, гаек, муфт и др.) на токарных станках. На них можно производить обтачивание и растачивание цилиндрических, конических, шаровых и профильных поверхностей этих деталей, подрезание торцов, вытачивание канавок, нарезание наружных и внутренних резьб, накатывание рифлений, сверление, зенкерование, развертывание отверстий и другие виды токарных работ. Иными словами обработка на токарных станках представляет собой изменение формы и размеров заготовки путем снятия припуска. Станок сообщает заготовке вращение, а режущему инструменту - движение относительно нее. Благодаря различным движениям заготовки и резца происходит процесс резания. Обрабатываемость материалов резанием зависит от их химического состава, структуры, механических и физических свойств. При черновом точении обрабатываемость оценивают скоростью инструмента при соответствующей скорости и силе резания, а при чистовой - шероховатостью поверхности, точностью обработки и стойкостью инструмента. Обрабатываемость металлов определяют методами, основанными на оценке изменений стойкости режущего инструмента при различных скоростях резания. Допустимую скорость резания как критерий оценки обрабатываемости применяют наиболее часто, так как скорость резания оказывает весьма существенное влияние на производительность, а следовательно, и на себестоимость обработки. Считается, что лучшую обрабатываемость имеет тот металл, который при прочих равных условиях, допускает более высокую скорость резания. На токарных станках обрабатывают такие конструкционные материалы, как чугун, сталь, цветные металлы и их сплавы, пластмассы. 2. Классификация токарных станков В зависимости от вида выполняемых работ, степени автоматизации и специализации металлорежущие станки подразделяют на девять групп. Каждая группа, в свою очередь, подразделяется на девять подгрупп (типов станков). Металлорежущие станки подразделяют: 1 группа - токарные станки; 2 - сверлильные и расточные; 3 - шлифовальные, заточные, полировальные и доводочные; 4 - комбинированные; 5 - зубообрабатывающие; 6 - фрезерные; 7 - строгальные, долбежные и протяжные; 8 - разрезные; 9 - разные. Каждая подгруппа характеризуется конструктивными особенностями станков и делится на типы: 1 - автоматы и полуавтоматы одношпиндельные; 2 - автоматы и полуавтоматы многошпиндельные; 3 - сверлильно-отрезные; 4 - револьверные; 5 - карусельные; 6 - токарные и лобовые; 7 - многорезцовые; 8 - специализированные; 9 - разные. По степени специализации токарные станки подразделяются на универсальные, специализированные и специальные. Универсальные станки являются самой многочисленной группой в парке токарных станков. А них можно производить все технологические операции, характерные для токарной обработки. Специализированные станки - станки, на которых производят обработку ограниченного числа технологических операций на деталях одного наименования; это, как правило, автоматизированные станки, налаженные на обработку нескольких поверхностей. Специализированные станки снабжают специальной оснасткой и применяют обычно в крупносерийном и массовом производстве. Специальные станки служат для выполнения одной или нескольких операций на детали одного типоразмера (такие станки, как правило, не переналаживаются на обработку других деталей). По степени точности токарные станки подразделяют на пять классов. Класс Н: станки нормальной точности, к которым относят большинство универсальных станков (1К62, 16К20). Класс П: станки повышенной точности, изготовляемые на базе станков нормальной точности, но при повышенных требованиях к точности изготовления ответственных деталей станка и качеству сборки (16К20П, 1И611П). Класс В: станки высокой точности, полученной за счет специальной конструкции отдельных узлов, высоких требований к точности изготовления деталей, качеству сборки и регулировки узлов и станка в целом (1В616). Класс А: станки особовысокой точности (при их изготовлении предъявляют еще более высокие требования, чем к станкам класса В). Класс С: станки особо точные или мастер-станки, изготовляемые с максимально возможной степенью точности и повышенными требованиями к сборке и регулировке узлов. При обозначении станков токарной группы первая цифра указывает группу станков, вторая - тип станка, последующие цифры - технические параметры станка (максимальный диаметр обрабатываемой детали, высоту центров и др.). Буква после первой или второй цифры символизирует завод-изготовитель или его модернизацию. Буква, поставленная в конце цифрового шифра, указывает на класс точности станка. 3. Сущность обработки металлов резанием Для осуществления процесса резания необходимы два движения: главное движение и движение подачи. Главное движение, определяющее скорость резания в токарных станках, - вращательное , оно сообщается, как правило, заготовке. Движение подачи сообщается инструменту и может выполняться по прямолинейной и криволинейной траекториям. На обрабатываемой детали 1 различают три вида поверхности: обрабатываемую, обработанную и поверхность резания. Схема положения поверхности обрабатываемой детали к плоскости резца Обрабатываемой поверхностью а называется поверхность заготовки на участке, который подлежит обработке на данной операции. Обработанной поверхностью в называется поверхность, которая получается после обработки, т.е. после снятия стружки. Поверхностью резания б называется поверхность, образуемая на обрабатываемой детали режущей кромкой резца. Она является переходной между обрабатываемой и обработанной поверхностями. Плоскостью резания д называется поверхность, касательная к поверхности резания и проходящая через режущую кромку резца. Основной плоскостью г называется плоскость, параллельная продольной и поперечной подачам и перпендикулярная к плоскости резания. 4. Режущий инструмент При работе на токарных станках используют различные режущие инструменты: резцы, сверла, развертки, метчики, плашки, фасонный инструмент и др. Геометрические параметры режущего инструмента Резец (рис.1) представляет собой стержень прямоугольного (иногда круглого) сечения и состоит из рабочей части и корпуса . Рабочая часть резца является режущей частью, на которой находится лезвие инструмента. Корпус резца служит для установки и крепления инструмента на станке. Рабочая часть резца имеет переднюю поверхность, главную и вспомогательную задние поверхности, главную и вспомогательную режущие кромки, вершину лезвия и радиус скругления режущей кромки. Передней поверхностью называется поверхность лезвия, контактирующая при резании со стружкой. Задними поверхностями называются поверхности лезвия, контактирующие при резании с поверхностями заготовки. Одна из них называется главной поверхностью и расположена в направлении подачи резца, а другая - вспомогательной задней поверхностью. Режущая кромка лезвия образуется пересечением передней и задней поверхностей лезвия. Одна из них называется главной режущей кромкой, так как формирует большую сторону сечения срезаемого слоя, а другая - вспомогательной режущей кромкой, так как формирует меньшую сторону сечения срезаемого слоя. Вспомогательных режущих кромок может быть одна или две. Вершина лезвия резца называется участок режущей кромки в месте пересечения двух его задних поверхностей. Вершина резца в плане может быть острее ой и закругленной. Рабочая часть резца имеет главные углы, углы в плане и угол наклона главной режущей кромки. К главным углам относят задний угол, угол заострения, передний угол и угол резания. Главные углы резца находятся в главной секущей плоскости перпендикулярной к главной режущей кромке, плоскости резания и основной плоскости. Рабочая часть резца представляет собой клин, форма которого характеризуется углом между передней и главной задней поверхностями резца. Этот угол называется углом заострения и обозначается в. Задним углом б называется угол в секущей плоскости между задней поверхностью лезвия и плоскостью резания. Задним вспомогательным углом б1 называется угол между задней вспомогательной поверхностью резания и плоскостью резания. Передним углом г называется угол в секущей плоскости между передней поверхностью лезвия и основной плоскостью. Углом резания д называется угол между передней поверхностью резца и плоскостью резания. Главным углом в плане ц называется угол в основной плоскости между плоскостью резания и рабочей плоскостью. Вспомогательным углом в плане ц1 называется угол между вспомогательной режущей кромкой и направлением подачи. Углом л наклона главной режущей кромки называется угол в плоскости резания между режущей кромкой и основной плоскостью. В зависимости от направления наклона режущей кромки угол л может быть положительным, отрицательным или равным нулю. Резцы, у которых вершина является низшей точкой режущей кромки, угол л положительный . Если режущие кромки расположены параллельно основной плоскости, то л=0 .Резцы, у которых вершина является высшей точкой режущей кромки, то угол л отрицательный. При л=0 стружка сходит в виде прямой спирали в направлении, перпендикулярном режущей кромке (рис.5,е). Ее отвод в этом случае обычно затруднен. Для облегчения отвода стружки целесообразно, чтобы она имела форму винтовой спирали. Стружка получает такую форму, если главная режущая кромка резца будет положительной или отрицательной. Задний угол б служит для уменьшения трения между задней поверхностью резца и обрабатываемой деталью. С уменьшением трения уменьшается нагрев резца, который при этом меньше изнашивается. Однако, если задний угол увеличить, резец быстро разрушается. Главным фактором, от которого зависит величина заднего угла, является подача резца. С ее уменьшением изнашивания резца по задней поверхности возрастает, а с ее увеличением - уменьшается. Поэтому при чистовой обработке, которую обычно ведут с малой подачей резца, нужно применять резцы с большим задним углом, а при обдирочных работах - с меньшим. С увеличением переднего угла г облегчается врезание резца в металл, улучшается сход стружки, уменьшаются сила резания и расход мощности, улучшается качество обработанной поверхности. Вместе с тем увеличение переднего угла приводит к понижению прочности режущей кромки , увеличению изнашивания резца вследствие выкрашивания режущей кромки и ухудшению отвода теплоты из зоны резания. Поэтому при обработке твердых и хрупких металлов для облегчения отвода стружки следует применять резцы с большим передним углом. У резцов, оснащенных твердосплавными пластинами, передний угол выбирают меньшим, чем у резцов из быстрорежущей стали. Главный угол в плане ц определяет толщину a и ширину b среза (рис.6). Ширина среза равна рабочей длине главной режущей кромки, а толщина среза a - величине подачи S. При одних и тех же подачах и глубине резания с уменьшением угла ц толщина среза уменьшается, а ширина его увеличивается. Уменьшение главного угла в плане ц приводит к увеличению силы резания. При уменьшении угла ц особенно сильно возрастает радиальная сила, что при обработке недостаточно жестких деталей может вызвать их прогибание и сильные вибрации детали и резца. Вспомогательный угол в плане ц1 уменьшает трение вспомогательной задней поверхности резца по обработанной поверхности. Однако при его увеличении уменьшается угол при вершине, вследствие чего ухудшаются условия теплоотвода, уменьшается продолжительность работы резца до затупления (стойкость) и ухудшается качество обработанной поверхности. С уменьшением угла ц1 улучшается качество обработанной поверхности, но увеличивается отжим резца от обрабатываемой детали, и при недостаточно жестких деталях возможно возникновение вибрации. Для нормальной работы резца необходимы правильная его установка и надежное крепление. Резец должен быть правильно установлен относительно центров станка и надежно закреплен. Точная установка вершины резца относительно центров способствует уменьшению изнашивания резца, повышению точности и качества обработанной поверхности. Происходит это потому, что действительные углы резания зависят от положения резца относительно обрабатываемой детали. При обработке конусов (особенно с большой конусностью) необходимо устанавливать проходные резцы перпендикулярно к образующей конуса. Если вершина резца расположена выше линии центров, то передний угол г1 увеличивается , а задний угол б1 уменьшается, при этом угол резания д1 тоже уменьшается , так как д=90°- г. Такая установка резца благоприятно сказывается на условиях резания, но может привести к возникновению вибрации, снижению точности и шероховатости обработанной поверхности, а иногда и поломке резца. Если вершина резца находится ниже линии центров, то происходит обратное. При этом передний угол уменьшается, причем он может стать меньше 0°, а задний угол увеличивается (угол резания тоже увеличивается). При такой установке возможен прогиб детали. При всех установках резца относительно линии центров углов заострения в остается постоянным. Рекомендации по установке резцов относительно линии центров: 1. Вершина резца устанавливается обязательно по линии центров при обработке деталей со сложной конструкцией поверхностей, чистовом нарезании резьбы, обработке конусов и др. 2. Допускается установка вершины резца выше линии центров не более 1/100 диаметра обрабатываемой детали при наружном черновом точении, чистовом растачивании и черновом нарезании резьбы. 3. Допускается установка вершины резца ниже линии центров не более 1/100 диаметра обрабатываемой детали при наружном чистовом обтачивании и черновом растачивании. 5. Инструментальные материалы Инструментальные материалы играют решающую роль в повышении режущих свойств инструмента и производительности труда, в формировании точностных параметров и качественных характеристик обрабатываемых деталей. Для получения инструментов с высокими режущими свойствами инструментальные материалы должны удовлетворять следующим основным требованиям: 1) иметь высокую теплостойкость и износостойкость, 2) быть высокотвердыми и прочными, 3) иметь возможность обрабатываться в холодном и в нагретом состоянии, обладать определенными свойствами при термообработке, сварке, напайке, заточке и т.д., 4) обладать достаточной теплопроводностью, малой чувствительностью к циклическим колебаниям температуры, 5) быть экономичными. Инструментальные стали Инструментальные стали подразделяются на углеродистые, легированные и быстрорежущие. Углеродистые инструментальные стали разделяются на стали обыкновенного качества и высококачественные (ГОСТ 1435-74).В последних содержится меньше серы и фосфора, до 0,03% каждого. К сталям обыкновенного качества относятся стали У7-У13, а к высококачественным У7А-У13А, где цифры означают в среднем десятые доли процентного содержания углерода. Кроме этого, в состав сталей входят Cr, Ni и М в пределах 0,15-0,20% (как остаточных примесей стали), а также Mn и Si от 0,15 до 0,30% каждого. Углеродистые инструментальные стали имеют низкие режущие свойства. Их теплостойкость до 200°С. При температуре резания более 200°С стали резко теряют твердость и стойкость, что объясняется строением и свойством структуры мартенсита. В закаленном состоянии мартенсит закаленной углеродистой стали представляет собой твердый раствор углерода в б-железе. До температуры 200°С мартенсит устойчив. Закаленная сталь сохраняет достаточную твердость и износостойкость. При температуре более 200°С мартенсит начинает распадаться, из него выделяются карбиды железа (цементит),он коагулирует (укрупняет), и твердость понижается. Поэтому отпуск закаленной стали проводят при 160-180°С на воздухе, после чего ее твердость повышается до YRCэ 60-63. Инструменты из этих сталей должны применятся , когда температура резания не превосходит 200°С. Углеродистые инструментальные стали, имеют малую прокаливаемость, большую чувствительность к перегреву при закалке, что приводит к росту зерна. Следствием этого является повышенная хрупкость и выкрашивание режущих кромок инструмента. Пониженная прокаливаемость этих сталей вынуждает применять при их закалке резкие охладители (чистую воду или воду с примесями солей), хотя резкое охлаждение вызывает значительные деформации, трещины и даже поломку закаленного инструмента. Из-за низкой режущей способности применяют углеродистые стали: У7-У9- для слесарных, деревообрабатываемых и кузнечных инструментов; У10А-У13А - для ручных режущих инструментов (напильники, метчики, плашки, развертки ),а также для машинных инструментов, работающих на низких скоростях резания. Вследствие большой деформации при термообработке не рекомендуется изготовлять из этой стали инструменты большой длины, а также инструменты, имеющие сложный профиль. Из-за склонности этих сталей к обезуглероживанию не следует шлифовать профиль инструмента, так как при этом возникает высокая контактная температура и в результате обезуглероживания поверхностного слоя снижается его твердость и режущие свойства инструмента. Буква У в марке стали обозначает, что сталь углеродистая, цифра после буквы указывает на содержание в стали углерода в десятых долях процента, а буква А - на то, что сталь углеродистая высококачественная, так как содержит серы и фосфора не более 0,03% каждого. Легированные инструментальные стали имеют в своем составе небольшое содержание таких легирующих элементов, как Mn, Si, Cr, W, V.Легированные стали имеют более высокие режущие свойства, чем углеродистые стали. Их теплостойкость 250°С, они более износостойки, меньше коробятся при термообработке, лучше прокаливаются. Стали применяются для изготовления штампов, режущего, измерительного и слесарного инструмента. Основными марками для режущих инструментов являются 9ХС, ХВГ, ХВСГ ,Х6ВФ. Для режущих инструментов наиболее распространенными являются 9ХС и ХВГ. Сталь 9ХС применяют для изготовления сверл, разверток , метчиков, плашек, гребенок, фрез, работающих при сравнительно низких скоростях резания. В этой стали карбиды более равномерно распределены, что позволяет изготовлять из нее инструменты с более тонкими режущими элементами. Однако сталь 9ХС имеет и некоторые недостатки : плохо шлифуется, на поверхности образуются надиры ; имеет повышенную чувствительность к обезуглероживанию. Сталь ХВГ отличается меньшим короблением при термообработке, поэтому из нее изготовляют инструменты сравнительно большой длины : протяжки, длинные развертки и метчики и другие, работающие с невысокими режимами резания по металлу. Ее так же применяют для изготовления деревообрабатывающих инструментов. Сталь ХВСГ по своим режущим свойствам и характеристикам занимает промежуточное положение между 9ХС и ХВГ. В основном из нее делают ручные инструменты по металлу (сверла, развертки, метчики, плашки и др.), а также машинные деревообрабатывающие инструменты. Сталь Х6ВФ является более износостойкой вследствие повышенного содержания хрома, поэтому целесообразно ее применять для изготовления резьбонакатных роликов, ножовочных полотен. Цифры в марке стали обозначают состав (в процентах) входящих компонентов. Первая цифра слева от буквы определяет содержание углерода в десятых долях процента. Цифры справа от буквы указывают среднее содержание легирующего элемента в процентах. Если содержание легирующего элемента или углерода близко к 1%, цифра не ставится Быстрорежущие стали имеют более высокие режущие свойства ,чем легированные инструментальные стали. Применяют для изготовления различных инструментов ,но чаще сверл ,зенкеров, метчиков. Быстрорежущие стали обозначают буквами и цифрами, например Р9, Р6М3 и др. Первая Р (рапид) означает, что сталь быстрорежущая. Цифры после нее указывают среднее содержание вольфрама в процентах. Остальные буквы и цифры обозначают то же , что и в марках легированных сталей. Эти группы быстрорежущих сталей отличаются по своим свойствам и областям применения. Стали нормальной производительности, имеющие твердость до HRC 65 , теплостойкость до 620°с и прочность на изгиб 3000-4000МПа, предназначены для обработки углеродистых и низколегированных сталей с пределом прочности до 1000МПа, серого чугуна и цветных металлов. К сталям нормальной производительности относят вольфрамовые марок Р18, Р12, Р9, Р9Ф5 и вольфрамомолибденовые марок Р6М3, Р6М5,сохраняющие твердость не ниже HRC 62 до температуры 620°С. Быстрорежущие стали повышенной производительности, легированные кобальтом или ванадием, с твердостью до HRC 73-70 при теплостойкости 730-650°С и с прочностью на изгиб 250-280 МПа предназначены для обработки труднообрабатываемых сталей и сплавов с пределом прочности свыше 1000МПа, титановых сплавов и др. Улучшение режущих свойств этой стали достигается повышением содержания в ней углерода с 0,8 до 1% , а также дополнительным легированием цирконием, азотом, ванадием, кремнием, и другими элементами. К быстрорежущим сталям повышенной производительности относят 10Р6М5К5, Р2М6Ф2К8АТ, Р18Ф2, Р14Ф4, Р6М5К5, Р9М4ЕВ, Р9К5, Р9К10, Р10К5Ф5, Р18К5Ф2, сохраняющие твердость HRC 64 до температуры 630-640°С. Твердые сплавы делят на металлокерамические и минералокерамические, их выпускают в виде пластинок разной формы. Инструменты, оснащенные пластинками из твердых сплавов, позволяют применять более высокие скорости резания, чем инструменты из быстрорежущей стали. Металлокерамические твердые сплавы разделяют на вольфрамовые, титановые, титановольфрамовые. Вольфрамовые сплавы группы ВК состоят из карбидов вольфрама и кобальта. Применяют сплавы марок ВК3, ВК3М, ВК4, ВК6, ВК60М, ВК8, ВК10М. Буква В означает карбид вольфрама, К - кобальта, цифра - процентное содержание кобальта (остальное - карбид вольфрама). Буква М, приведенная в конце некоторых марок, означает, что сплав мелкозернистый. Такая структура сплава повышает износостойкость инструмента, но снижает сопротивляемость ударам. Применяют вольфрамовые сплавы для обработки чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, пластмассы, фибры, стекла и др.). Титановольфрамовые сплавы группы ТК состоят из карбидов вольфрама, титана и кобальта. К этой группе относят сплавы марок Т5К10, Т5К12, Т14К8, Т15К6, Т30К4. Буква Т и цифра за ней указывают на процентное содержание карбида титана, буква К и цифра за ней - процентное содержание карбида кобальта, остальное в данном сплаве - карбид вольфрама. Применяются эти сплавы для обработки всех видов сталей. Титанотанталовольфрамовые сплавы группы ТТК состоят из карбидов вольфрама, титана, тантала и кобальта. К этой группе относят сплавы марок ТТ7К12 и ТТ10КВ-Б, содержание соответственно 7 и 10% карбидов титана и тантала, 12 и 8% кобальта, остальное - карбид вольфрама. Эти сплавы работают в особо тяжелых условиях обработки, когда применение других инструментальных материалов не эффективно. Сплавы имеющие меньшее процентное содержание кобальта, марок ВК3, ВК4 обладают меньшей вязкостью; применяют для обработки со снятием тонкой стружки на чистовых операциях. Сплавы имеющие большее содержание кобальта марок ВК8, Т14К8, Т5К10 обладают большей вязкостью, их применяют для обработки со снятием толстой стружки на черновых операциях. Мелкозернистые твердые сплавы марок ВК3М, ВК6М, ВК10М и крупнозернистые марок ВК4 и Т5К12 применяют в условиях пульсирующих нагрузок и при обработке труднообрабатываемых нержавеющих, жаропрочных и титановых сплавов. Твердые сплавы обладают высокой теплостойкостью. Вольфрамовые и титановольфрамовые твердые сплавы сохраняют твердость при температуре в зоне обработки 800-950°С, что позволяет работать при высоких скоростях резания (до 500 м/мин при обработке сталей и 2700 м/мин при обработке алюминия). Для обработки деталей из нержавеющих, жаропрочных и других трудно обрабатываемых сталей и сплавов предназначены особо мелкозернистые вольфрамокобальтовые сплавы группы ОМ: ВК6-ОМ - для чистовой обработки, а сплавы ВК10-ОМ - для получистовой и черновой обработки. Применение твердых сплавов расширяется и составляет для резцов 95%, для фрез 4,5%, для осевого инструмента около 1% общего выпуска этих инструментов. В ряде случаев режущие пластины сплавов покрывают тончайшим (5-10мкм) слоем износостойкого материала (карбида, нитрида и карбонитрида титана и др.), что повышает стойкость пластин в 2-3 раза. Металлокерамика, композиты и алмаз. Поиски инструментальных материалов, не содержащих дефицитных элементов, привели к созданию в начале 50-х гг. минералокерамических режущих пластин на основе окиси алюминия. Распространена оксидная керамика марок ЦМ-332, ВО13 и ВШ-75. Она отличается высокой теплостойкостью (до 1200°С) и износостойкостью, что позволяет обрабатывать металл на высоких скоростях резания (при чистовом обтачивании чугуна - до 3700 м/мин), которые в 2 раза выше, чем твердых сплавов. В настоящее время для изготовления режущих инструментов применяют режущую (черную) керамику марок В3, ВОК-60, ВОК-63, ВОК-71. Перспективными материалами для изготовления режущей части резца являются поликристаллы кубического нитрида бора, известные под названием эльбор-Р, композит, исмит и гексанит-Р. При финишной обработке таким инструментом заготовок из чугуна и закаленных сталей высокой твердости достигается шероховатость поверхности, соответствующая шлифованию. Резцы и фрезы имеют режущие элементы из поликристаллов диаметром до 4мм и длиной до 6 мм. Для чистового точения деталей из цветных металлов и сплавов, пластмасс и других неметаллических материалов применяют резцы из природных алмазов массой 0,21- 0,85 карата, закрепляемых механическим способом или напайкой в переходных державках диаметром до 20 мм и длиной до 50 мм. Для обработки твердых сплавов, Высококремнистых материалов, стеклопластиков и других пластмасс применяют синтетические алмазы типа карбонадо и баласс (марки АСПК и АСБ), которые по своим свойствам соответствуют природным алмазам тех же сортов. 6. Образование стружки и сопровождающие его явления Процесс резания (стружкообразования) - сложный физический процесс, сопровождающийся большим тепловыделением, деформацией металла, изнашиванием режущего инструмента и наростообразованием на резце. Знание закономерностей процесса резания и сопровождающих его явления позволяет рационально управлять этим процессом и обрабатывать детали более качественно, производительно и экономично. При резании различных материалов могут образовываться следующие виды стружек: сливные (непрерывные), скалывания (элементные) и надлома (рис.1). Типы стружек: а - сливная, б - скалывания, в - надлома. Сливная стружка образуется при резании вязких и мягких металлов (мягкая сталь, латунь) с высокой скоростью. Чем больше скорость резания и вязкость обрабатываемого материала, а также меньше угол резания и толщина среза и выше качество смазочно-охлаждающей жидкости, тем стружка ближе к сливной. Стружка надлома образуется при резании хрупких металлов (бронзы, чугуны). Такая стружка состоит из отдельных, почти не связанных между собой элементов. Обработанная поверхность при образовании такой стружки получается шероховатой, с большими впадинами и выступами. В определенных условиях, например при обработке чугунов средней твердости, стружка надлома может получиться в виде колец. Сходство ее со сливной стружкой только внешнее, так как достаточно сжать такую стружку в руке, и она легко разрушится на отдельные элементы. Стружка скалывания занимает промежуточное положение между сливной стружкой и стружкой надлома и образуется при обработке некоторых сортов латуни и твердых сталей с большими подачами и относительно малыми скоростями резания. С изменением условий резания стружка скалывания может перейти в сливную, и наоборот. В целях создания наилучших условий для отвода стружки из зоны резания необходимо обеспечить ее дробление или завивание в спираль определенной длины. Стружка, завитая в спираль длиной до 200 мм, наиболее полно отвечает требованиям, предъявляемым к ней при работе на токарных станках с ЧПУ. Дробленую стружку в виде колец и полуколец диаметром 10-15 мм и более следует рассматривать как хорошую. Эта стружка, несмотря на то, что занимает меньший объем и легче транспортируется, снижает стойкость инструмента. Мелкодробленая стружка должна рассматриваться как удовлетворительная. Помимо снижения стойкости резцов такая стружка, разлетаясь во все стороны, попадает на поверхности станка, нарушает нормальную работу его узлов. Формирование стружки в виде непрерывной спирали, прямой ленты и путаного клубка не удовлетворяет требованиям обработки деталей на станках с ЧПУ и поэтому должно быть исключено. Наиболее простым и доступным, но имеющим ограниченные возможности является способ дробления или завивания стружки путем подбора определенных режимов резания и геометрических параметров инструмента. Рекомендуемая область применения данного способа - черновое и обдирочное точение при тяжелых условиях резания. При черновом и получистовом точении широко применяют способы завивания или дробления стружки с помощью различных препятствий для ее схода, формируемых на передней поверхности резца в виде лунок, канавок, порожков или с помощью накладных стружколомов различной формы. Под действием режущего инструмента срезаемый слой материала подвергается сжатию. Процессы сжатия (как и процессы растяжения) сопровождаются упругими и пластическими деформациями. Режущий инструмент деформирует не только срезаемый слой, но и поверхностный слой обрабатываемого материала. Глубина деформации поверхностного слоя зависит от различных факторов и может достигать от сотых долей до нескольких миллиметров. Под действием деформации поверхностный слой упрочняется, увеличивается его твердость и уменьшается пластичность, происходит так называемый наклеп обрабатываемой поверхности. Чем мягче и пластичнее обрабатываемый металл, тем большему наклепу он подвергается. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Степень упрочнения и глубина наклепа увеличиваются с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. Глубина наклепа примерно в 2-3 раза больше при работе затупленным режущим инструментом, чем при работе острозаточенным. Смазочно-охлаждающие жидкости при резании уменьшают глубину и степень упрочнения поверхностного слоя. При некоторых условиях резания на переднюю поверхность режущей кромки налипает обрабатываемый материал, образуя нарост. Он имеет клиновидную форму, по твердости в 2-3 раза превышает твердость обрабатываемого металла. Являясь как бы продолжением резца, нарост изменяет его геометрические параметры: участвует в резании металла, влияет на результаты обработки, изнашивание резца и силы, действующие не резец. При обработке нарост периодически разрушается (скалывается) и вновь образуется. Часть его уходит со стружкой, а часть остается вдавленной в обработанную поверхность. Отрыв частиц нароста происходит неравномерно по длине режущего лезвия, что приводит к мгновенному изменению глубины резания. Эти явления, повторяющиеся периодически, ухудшают качество обработанной поверхности, так как вся она оказывается усеянной неровностями. С увеличением пластичности обрабатываемого металла размеры нароста возрастают. При обработке хрупких материалов, например чугуна, нарост может и не образоваться. Для уменьшения нароста рекомендуется уменьшать шероховатость передней поверхности режущего инструмента и по возможности увеличивать передний угол, а также применять смазочно-охлаждающие жидкости. Образование нароста улучшает условия резания при выполнении черновой обработки. 7. Режимы резания при точении Глубину резания определяют в основном припуском на обработку, который выгодно удалять за один рабочий ход. Для уменьшения влияния сил резания иногда разделяют припуск на несколько рабочих ходов: 60 % - при черновой обработке, 20 - 30 % - при получистовой и 10 - 20 % - при чистовой обработке. Подача ограничивается силами, действующими в процессе резания, которые могут привести к поломке режущего инструмента и станка. Целесообразно работать с максимально возможной подачей. Обычно подачу назначают по таблицам справочников, составленным на основе специальных исследований и изучения опыта работы машиностроительных заводов. После выбора подачи из справочников ее корректируют по кинематическим данным станка, на котором ведут обработку. При этом выбирают ближайшую меньшую подачу. При одинаковой площади поперечного сечения среза нагрузка на резец меньше при работе с меньшей подачей и большей глубиной резания, а нагрузка на станок (по мощности), наоборот, меньше при работе с большей подачей и меньшей глубиной резания. Скорость резания зависит от конкретных условий обработки, которые влияют на стойкость (время работы от переточки до переточки) инструмента. Чем больше скорость резания при работе инструмента при одной и той же стойкости, тем выше его режущие свойства, тем более он производителен. На допускаемую скорость резания влияют следующие факторы: стойкость инструмента, физико-механические свойства обрабатываемого материала, подача и глубина резания, геометрические элементы режущей части инструмента, размеры сечения державки резца, смазочно-охлаждающая жидкость (СОЖ), допустимый износ инструмента, температура в зоне резания. Если стойкость резцов из быстрорежущей стали уменьшается с увеличением скорости резания, то стойкость резцов, оснащенных пластинками из твердых сплавов, в меньшей степени зависит от скорости резания и содержания в обрабатываемой стали легирующих элементов: хрома, вольфрама, марганца, кремния и др. С большей скоростью резания обрабатывают автоматные стали, цветные и легкие сплавы. Например, скорость резания алюминия в 5 - 6 раз больше, чем скорость обработки углеродистой конструкционной стали. Увеличение подачи и глубины резания вызывает интенсивное изнашивание резца, что ограничивает скорость резания. Для достижения большей производительности резания выгоднее работать с большими сечениями среза за счет уменьшения скорости резания. Необходимая скорость резания и соответствующая ей стойкость инструмента определяются геометрией режущей части резца, свойствами инструментального материала, обрабатываемостью заготовки и другими факторами. Например, увеличение площади сечения державки резцов из быстрорежущих сталей позволяет повысить скорость резания материала, так как улучшается теплоотвод и повышается жесткость резца: для твердосплавных резцов влияние сечения державки незначительно.
8. Тепловые явления при резании металлов При резании металлов затрачивается работа на пластические и упрегие деформации в срезаемом слое и в слое, прилегающем к обработанной поверхности и поверхности резания, а также на преодоление трения по передней и задней поверхностям резца. Работа, затрачиваемая на пластические деформации, составляет около 80 всей работы резания, а работа трения - около 20. Примерно 85 - 90 всей работы резания превращается в тепловую энергию, которая поглощается стружкой - 50 - 86, резцом - 10 - 40, обрабатываемой деталью - 3 - 9, около 1 теплоты излучается в окружающее пространство.
Страницы: 1, 2
|