Рефераты
 

Язык описания информационных моделей EXPRESS

Язык описания информационных моделей EXPRESS

1

Федеральное агентство по образованию

Сибирская государственная автомобильно-дорожная академия

(СибАДИ)

Кафедра УК и С

КУРСОВАЯ РАБОТА

на тему: Язык описания информационных моделей (EXPRESS)

по дисциплине «CALS-технологии»

Выполнила: ст-ка гр.41С

Проверил:

Омск - 2009

Содержание

Введение

1 Преимущества CALS

2 CALS в России

3 Государство покровительствует CALS-технологиям

4 Проблемы стандартизации описания продукции, технологии и бизнеса

5 Объектно-ориентированное моделирование на EXPRESS

6 Общая систематизация подходов

6.1 Классификация паттернов отображения

6.2 Отображение информационных схем

6.2.1 Схемо-независимая стратегия

6.2.2 Схемо-зависимая стратегия

6.3 Отображение наследования классов

6.3.1 Паттерн OneInheritanceHierarchy-OneTable

6.3.2 Паттерн OneClass-OneTable

6.3.3 Паттерн OneInheritancePath-OneTable

6.3.4 Паттерн AllClasses-OneTable

6.3.5 Паттерн BLOB

6.4 Отображение атрибутов

6.4.1 Представление простых типов

6.4.2 Отображение атрибутов простых типов

6.4.2.1
Паттерн Attribute-Column

6.4.2.2
Паттерн Attribute-Table

6.4.3
Отображение ассоциаций

6.4.3.1
Паттерн ForeignKeyAssociation

6.4.3.2 Паттерн ClassAssociation

6.4.3.3 Паттерн GenericAssociation

6.4.4 Отображение селективных типов

6.4.4.1 Паттерн Select-Columns

6.4.4.2 Паттерн ClassSelect

6.4.4.3 Паттерн HierarchySelect

6.4.4.4 Паттерн GenericSelect

6.4.5 Отображение агрегатов

6.4.5.1 Паттерн ClassAggregate

6.4.5.2 Паттерн HierarchyAggregate

6.4.5.3 Паттерн GenericAggregate

6.5
Отображение метаданных

7 Реализация промежуточного объектно-реляционного слоя в среде Oracle9

7.1 Схемо-независимая стратегия

7.2 Схемо-зависимая стратегия

7.3
BLOB стратегия

8 Рекомендации использования

Заключение

Список используемых и
сточников

Введение

Термин CALS (Continuous Acquisition and Lifecycle Support -- непрерывная информационная поддержка поставок и жизненного цикла) означает совокупность принципов и технологий информационной поддержки жизненного цикла продукции на всех его стадиях. Русскоязычный аналог понятия CALS -- Информационная Поддержка жизненного цикла Изделий (ИПИ). В последнее время за рубежом наряду с CALS используется также термин Product Lifecycle Management (PLM).

Цель внедрения CALS -- минимизация затрат в ходе жизненного цикла изделия, повышение его качества и конкурентоспособности.

Для описания схем данных используется разработанный язык EXPRESS. Этот язык регламентирует:

· Черчение (прямое и ассоциативное)

· Проектирование конструкций

· Инженерный анализ

· Технологическую подготовку

· Производство

· Тестирование данных и обмен ими в специальном текстовом формате

1. Преимущества CALS

Технологии, стандарты и программно-технические средства CALS обеспечивают эффективный и экономичный обмен электронными данными и безбумажными электронными документами, что дает следующие преимущества:

· возможность параллельного выполнения сложных проектов несколькими рабочими группами (параллельный инжиниринг), что существенно сокращает время разработок;

· планирование и управление многими предприятиями, участвующими в жизненном цикле продукции, расширение и совершенствование кооперационных связей (электронный бизнес);

· резкое сокращение количества ошибок и переделок, что приводит к сокращению сроков реализации проектов и существенному повышению качества продукции;

· распространение средств и технологий информационной поддержки на послепродажные стадии жизненного цикла - интегрированная логистическая поддержка изделий.

На экономические показатели предприятий, применяющих CALS-технологии, непосредственно влияют следующие факторы:

· сокращение затрат и трудоемкости процессов технической подготовки и освоения производства новых изделий;

· сокращение сроков вывода на рынок новых конкурентоспособных изделий;

· сокращение брака и затрат, связанных с внесением изменений в конструкцию;

· увеличение объемов продаж изделий, снабженных электронной технической документацией (в частности, эксплуатационной), составленной в соответствии с требованиями международных стандартов;

· сокращение затрат на эксплуатацию, обслуживание и ремонт изделий ("затрат на владение"), которые для сложной наукоемкой продукции подчас равны или превышают затраты на ее закупку.

Вот некоторые количественные оценки эффективности внедрения CALS в промышленности США:

· прямое сокращение затрат на проектирование - от 10 до 30%;

· сокращение времени разработки изделий - от 40 до 60%;

· сокращение времени вывода новых изделий на рынок - от 25 до 75%;

· сокращение доли брака и объема конструктивных изменений - от 20 до 70%.

· сокращение затрат на подготовку технической документации - до 40%;

· сокращение затрат на разработку эксплуатационной документации - до 30%.

По зарубежным данным, потери, связанные с несовершенством информационного взаимодействия с поставщиками, только в автомобильной промышленности США составляет порядка 1 млрд. долл. в год. Аналогичные потери имеют место и в других отраслях промышленности.

В тех же источниках указывается, что затраты на разработку реактивного двигателя GE 90 для самолета «Боинг-777» составили 2 млрд. долл., а разработка новой модели автомобиля компании «Форд» стоит от 3 до 6 млрд. долл. Это означает, что экономия от снижения прямых затрат на проектирование только по двум указанным объектам может составить от 500 млн. до 2,2 млрд. долл.

Как видим, внедрение CALS-технологий приводит к существенной экономии и получению дополнительной прибыли. Поэтому эти технологии и их отдельные компоненты широко применяются в промышленности развитых стран. Так, из числа 500 крупнейших мировых компаний, входящих в перечень Fortune 500, около 100% используют такой важнейший компонент CALS, как средства PDM (Product Data Management -- «управление данными об изделии»). Среди предприятий с годовым оборотом свыше 50 млн. долл. такие системы используют более 80%.

В связи с большими объемами ожидаемой экономии и дополнительных прибылей в эту сферу привлекаются значительные инвестиции, измеряемые миллиардами долларов. По данным зарубежных источников, инвестиции правительства США в сферу CALS-технологий составляют около 1 млрд. долл. в год. Затраты других стран меньше, однако, например, правительство Финляндии затратило на национальную программу в этой области свыше 20 млн. долл. и примерно такую же сумму (около 25 млн. долл.) вложили в нее частные компании. Корпорация General Motors в течение 1990 -- 1995 годов израсходовала на эти цели 3 млрд. долл. Средние затраты на один проект, посвященный решению локальной задачи в области CALS-технологий (например, разработка стандарта или программы), составляют 1,2 -- 1,5 млн. долл. при среднем сроке выполнения от двух до четырех лет.

Эти цифры свидетельствуют о том, какое значение придают на Западе проблематике, связанной с CALS-технологиями.

2. CALS в России

Россия существенно отстает от ведущих промышленно развитых стран в части внедрения современных ИТ, в том числе технологий CALS. Это отставание чревато далеко идущими негативными последствиями, прежде всего, высокой вероятностью резкого сокращения экспортного потенциала российских производителей наукоемкой продукции, вплоть до полного вытеснения их с международного рынка, что может, по мнению зарубежных экспертов, произойти к 2005 -- 2008 году.

Мировой рынок полностью отторгнет продукцию, не снабженную электронной документацией и не обладающую средствами интегрированной логистической поддержки постпроизводственных стадий жизненного цикла. Уже сегодня многие иностранные заказчики отечественной продукции выдвигают требования, удовлетворение которых невозможно без внедрения CALS-технологий:

· представление конструкторской и технологической документации в электронной форме;

· представление эксплуатационной и ремонтной документации в форме интерактивных электронных технических руководств, снабженных иллюстрированными электронными каталогами запасных частей и вспомогательных материалов и средствами дистанционного заказа запчастей и материалов;

· организация интегрированной логистической поддержки изделий на постпроизводственных стадиях их жизненного цикла;

· наличие и функционирование электронной системы каталогизации продукции;

· наличие на предприятиях соответствующих требованиям стандартов ИСО 9000:2000 систем менеджмента качества и т. д.

Выполнение этих требований предопределяет необходимость внедрения на отечественных предприятиях CALS-технологий в полном объеме.

3. Государство покровительствует CALS-технологиям

В период с 1999-го по 2002 год Минпромнауки РФ совместно с Госстандартом РФ и Минобразования РФ осуществили ряд мер, направленных на создание предпосылок к внедрению CALS-технологий в промышленности России.

Были созданы начальные элементы инфраструктуры, необходимой для разработки и внедрения CALS-технологий: Государственный научно-образовательный центр CALS-технологий, Научно-исследовательский центр (НИЦ) CALS-технологий «Прикладная логистика» и технический комитет ТК 431 Госстандарта России, координирующий разработку отечественной нормативной базы.

Подготовлены научно-методические разработки: концепция развития CALS-технологий в промышленности России [1], концепция интегрированной логистической поддержки наукоемких изделий и концепция внедрения CALS-технологий на машиностроительном предприятии.

Предприняты разработки в области создания нормативной базы: Госстандарт РФ утвердил шесть документов ГОСТ Р ИСО 10303 и шесть документов в статусе рекомендаций по стандартизации Р 50. Были подготовлены проекты 7 ГОСТ Р и три проекта авиационных отраслевых стандартов. Кроме того, разработана программа работ по подготовке новых стандартов и корректировке существующих (ЕСКД, СРПП и др.).

Созданы программные средства, реализующие CALS-технологии. В их числе -- программный продукт Technical Guide Builder, предназначенный для автоматизированной подготовки электронной технической эксплуатационной документации на экспортируемую продукцию, соответствующей требованиям CALS-стандартов. Создание с помощью этого продукта интерактивных электронных технических руководств значительно повышает конкурентоспособность продукции. Другой продукт -- PDM STEP Suite -- служит для управления данными об изделии в процессе конструирования и технологической подготовки производства, что крайне необходимо предприятиям, как разрабатывающим наукоемкую продукцию, так и продающим лицензии на ее производство.

Наконец, разработаны методические основы создания интегрированной системы управления качеством продукции, соответствующей требованиям стандартов ИСО серии 9000 версии 2000 года.

Работы по внедрению CALS-технологий в промышленность России интенсивно продолжаются при пристальном внимании и поддержке Минпромнауки РФ, Госстандарта РФ и других министерств и ведомств России. Авторы надеются, что эти работы позволят если не полностью преодолеть, то хотя бы существенно сократить отставание российской промышленности от промышленности ведущих стран Запада.

4. Проблемы стандартизации описания продукции, технологии и

бизнеса

Началом современного этапа стандартизации описания продукции и технологии можно считать появление в середине 80-х годов проекта STEP (STandard for the Exchange of Product model data ) - серии стандартов для обеспечения универсального механизма обмена данными о продукции и технологии как между различными организациями, так и между разными этапами жизненного цикла продукции. Ядром STEP был почти объектно-ориентированный язык информационного моделирования EXPRESS (ISO 10303, part11). Не являясь языком программирования, не поддерживая “методы” и механизмы их наследования, действующая версия EXPRESS обеспечивает объектно-ориентированную идеологию для описания концептуальных моделей данных (множественное наследование данных и ограничений, выводимые атрибуты и др.).

Вторым "китом", на котором основан EXPRESS, является модель “сущность-связь” (E-R модель). Так же, чувствуется влияние и SQL. Графическая версия - EXPRESS-G уже полностью вытеснила IDEF 1X, который использовался на начальных этапах проекта STEP. В новой версии - EXPRESS v2 уже предполагается полная объектно-ориентированность, с поддержкой моделирования процессов, событий, транзакций, а также единая формальная метамодель, гораздо более детализированная и семантически более строгая, чем части Generic Resources серии стандартов ISO 10303 (parts 41-49).

Вся работа над проектом велась под эгидой подкомитета 4, технического комитета 184 ISO (ISO TC184/SC4), к концу 90-х годов в рамках которого появилось еще несколько серий стандартов (разной степени завершенности), связанных с описанием уже не только продукции и технологии (ISO 13584, ISO 14959, ISO 15926), но и управления производством (Manufacturing Management - MANDATE - ISO 15531) и использующих в качестве основы язык EXPRESS.

За 15 лет вокруг EXPRESS и STEP сформировалась уже целая отрасль ИТ, которая обеспечивает значительное уменьшение трудозатрат при “запуске” новых технологий и новых видов продукции. Причем, если серия ISO 10303 начиналась прежде всего для обслуживания автомобильной и аэрокосмической промышленностей, то сейчас она охватывает уже большинство видов производств, включая электротехническое, кораблестроительное, строительство, нефтехимическое и т.п. Появились не только компании, специализирующиеся на инструментарии технологии STEP, но и организации общеметодологического плана, связанные с развитием технологии “данных о продукции” (Product Data Technology- PDT), например EuroSTEP, PDT Solutions, PDTAG , PDES и др.

Важно отметить активное использование Internet при разработке стандартов, в работе над которыми принимают участие многие организации и специалисты всех ведущих стран мира. Это и серии телеконференций с дискуссиями по наиболее важным вопросам, и электронное голосование по утверждению проектов стандартов на разных стадиях разработки вплоть до статуса Международного стандарта, и организация очных семинаров/конференций, и организация полного электронного архива, доступного по Сети. Такая технология организации проектов на основе управления знаниями симптоматична для “новой эры” однако она делает только первые шаги и серьезно противоречит существующим социальным институтам.

Несмотря на внешние успехи сама идеология, методология и технология STEP/EXPRESS требует глубокого совершенствования. С одной стороны, нужна “гармонизация” и “модуляризация” стандартов внутри самого ISOTC184/SC4, c другой, оказалось необходимым выйти за рамки описания “продукции и технологии” и включить более широкий круг вопросов бизнеса, с третьей стороны все более возникает необходимость в согласовании аналогичных работ с другими организациями, занимающимися разработками в том же направлении и прежде всего с группами CSMF (Conceрtual Schema Modelling Facilities) и CDIF (CASE Data Interchange Format) в рамках объединенного технического комитета ISO и Международной Электротехнической Комиссии (ISO/IEC JTC1), с консорциумом WWW (W3C), с базовыми подгруппами OMG (Object Management Group), с группой KIF ( Knowledge Interchange Format ) ANSI ASC X3T2 , а также с OAG (Open Application Group).

5. Объектно-ориентированное моделирование на EXPRESS

Кратко рассмотрим подмножество языка EXPRESS, непосредственно относящееся к спецификации объектно-ориентированных данных. EXPRESS включает в себя также довольно развитую императивную часть, предназначенную для определения поведенческих свойств объектов и задания ограничений на них. Однако в силу предмета статьи эти подробности будут опущены, а их описание может быть найдено в оригинале стандарта языка

Язык EXPRESS поддерживает набор стандартных, встроенных в него элементарных типов данных INTEGER, REAL, NUMBER, LOGICAL, BOOLEAN, BINARY и STRING для представления, соответственно, целых, вещественных и произвольных числовых данных, логических и булевых значений, последовательностей двоичных данных и строк. Для перечислимых типов предусмотрена специальная конструкция ENUMERATION. Агрегатные типы ARRAY, SET, BAG и LIST предоставляют возможность определения различного рода контейнеров, таких как массивы, множества, мультимножества и списки. Опционально могут быть заданы их размеры, способы индексации элементов, условие множественности эквивалентных элементов для массивов и списков, а также допустимость разреженности элементов в массивах. Селективные типы, вводимые оператором SELECT, позволяют использовать переменные и константы, принимающие значения одного из альтернативных типов, объявленных в списке оператора. Новые производные типы данных создаются на основе стандартных и предопределенных типов с помощью конструкции TYPE. Допускается произвольная вложенность определений пользовательских типов, которая, в частности, обеспечивает создание многомерных массивов, вложенных селективных и агрегатных конструкций.

Типы GENERIC, AGGREGATE, а также ARRAY, SET, BAG и LIST OF GENERIC обеспечивают обобщенную реализацию функций и процедур с использованием абстракций простых и агрегатных данных.

Для объектных типов используется конструкция ENTITY, предусматривающая разнообразные модели простого и множественного наследования с помощью квалификаторов AND, ANDOR, ONEOF. При специфицировании объектного типа задаются атрибуты и ассоциации различной кратности (EXPLICIT), обратные ассоциации (INVERSE), а также производные вычисляемые свойства объектов (DERIVED). Последние определяются типами и выражениями, которые могут включать в себя значения явных атрибутов, константы, исполняемые операторы, включая вызов функций и процедур, как стандартных, так и пользовательских.

Ограничения целостности данных задаются непосредственно при определении объектного типа с помощью конструкции WHERE, определяющей логические условия в виде выражений логического типа, а также с помощью квалификатора UNIQUE, приписывающего условие уникальности атрибутам, ассоциациям и производным свойствам в популяциях родственных объектов. Для задания глобальных ограничений над разнородными объектами предусмотрена конструкция RULE, позволяющая описать ограничение в виде формальной спецификации функции логического типа.

Определения глобальных констант, простых и объектных типов данных, глобальных ограничений объединяются в разделе информационной схемы модели (SCHEMA). Посредством конструкций импорта USE и REFERENCE достигается возможность использования в одной схеме определений из других схем, что обеспечивает разработку сложных информационных моделей путем иерархической композиции отдельных схем. Таким образом, охватываются разнообразные практически содержательные случаи объектно-ориентированного моделирования прикладных данных.

Ниже представлен пример информационной модели на языке EXPRESS -- схема ActorResource, специфицирующая информацию о персонах и организациях, участвующих в совместном проекте, их ролях в нем и отношениях между ними.

SCHEMA ActorResource;

TYPE ActorSelect = SELECT (Organization, Person);

END_TYPE;

TYPE AddressTypeEnum = ENUMERATION OF (

END_TYPE;

TYPE Label = STRING(255);

END_TYPE;

TYPE ActorRole = Label;

END_TYPE;

ENTITY Address

ABSTRACT SUPERTYPE OF (ONEOF(PostalAddress, TelecomAddress));

Purpose : AddressTypeEnum;

UserDefinedPurpose : OPTIONAL STRING;

INVERSE

OfPerson : SET OF Person FOR Addresses;

OfOrganization : SET OF Organization FOR Addresses;

WHERE

WR1 : (Purpose <> AddressTypeEnum.USERDEFINED) OR

((Purpose = AddressTypeEnum.USERDEFINED) AND

EXISTS(UserDefinedPurpose));

END_ENTITY;

ENTITY PostalAddress

SUBTYPE OF(Address);

AddressLines : LIST [1:?] OF Label;

END_ENTITY;

ENTITY TelecomAddress

SUBTYPE OF(Address);

TelephoneNumbers : OPTIONAL LIST [1:?] OF Label;

FacsimileNumbers : OPTIONAL LIST [1:?] OF Label;

ElectronicMailAddresses : OPTIONAL LIST [1:?] OF Label;

WWWUrls : OPTIONAL LIST [1:?] OF Label;

WHERE

WR1 : EXISTS (TelephoneNumbers) OR EXISTS (FacsimileNumbers) OR

EXISTS (ElectronicMailAddresses) OR EXISTS (WWWUrls);

END_ENTITY;

ENTITY Organization;

Id : INTEGER;

Name : Label;

Description : OPTIONAL STRING;

Roles : LIST [0:?] OF UNIQUE ActorRole;

Addresses : LIST [1:?] OF UNIQUE Address;

INVERSE

IsRelatedBy : SET OF OrganizationRelationship FOR RelatedOrganizations;

Relates : SET OF OrganizationRelationship FOR RelatingOrganization;

Engages : SET OF Person FOR EngagedIn;

UNIQUE

UR1 : Id;

END_ENTITY;

ENTITY OrganizationRelationship;

Name : Label;

Description : OPTIONAL STRING;

RelatingOrganization : Organization;

RelatedOrganizations : SET [1:?] OF Organization;

END_ENTITY;

ENTITY Person;

Id : INTEGER;

FamilyName : OPTIONAL Label;

GivenName : OPTIONAL Label;

MiddleNames : OPTIONAL LIST [1:?] OF Label;

PrefixTitles : OPTIONAL LIST [1:?] OF Label;

SuffixTitles : OPTIONAL LIST [1:?] OF Label;

Roles : LIST [0:?] OF UNIQUE ActorRole;

Addresses : OPTIONAL LIST [1:?] OF UNIQUE Address;

EngagedIn : SET OF Organization;

UNIQUE

UR1 : Id;

WHERE

WR1 : EXISTS(FamilyName) OR EXISTS(GivenName);

END_ENTITY;

END_SCHEMA;

К настоящему времени в рамках международных программ по стандартизации прикладных информационных моделей и интероперабельности программных приложений накоплен значительный ресурс многопрофильных междисциплинарных моделей. Ресурс охватывает такие научные и промышленные области, как машиностроение, авиационную и космическую промышленность, судостроение, нефтегазовый комплекс, архитектуру и строительство, электронную промышленность, фармацевтику, геоинформатику. Значительная часть разработанных на языке EXPRESS спецификаций принята в качестве документов ISO-10303. Другая часть разрабатывается непосредственно промышленными альянсами для последующего представления в международную организацию по стандартам.

К существенным особенностям прикладных информационных моделей следует отнести:

· сложность и масштабность моделей, выражающиеся в большом количестве типов, определяемых в рамках одной информационной схемы, в применении альтернативных механизмов множественного наследования и полиморфного переопределения свойств объектных типов, а также в использовании вложенных агрегатных и селективных конструкций и двунаправленных ассоциаций;

· необходимость поддержки запросов к данным в декларативном предикативном и навигационном стилях, а также эффективную реализацию базовых операций манипулирования ими;

· широкий контекст использования моделей в приложениях, оперирующих как с данными одной многопрофильной информационной схемы, так и с данными нескольких независимых схем.

Данные особенности обуславливают поиск эффективных решений для объектно-реляционного отображения и их систематизацию для комплексного использования в конкретных прикладных контекстах.

6. Общая систематизация подходов

6.1 Классификация паттернов отображения

Независимо от особенностей применяемых подходов нам видится ряд связанных между собой аспектов отображения прикладных данных из объектно-ориентированной модели в реляционную. Прежде всего, это технические вопросы семантического отображения в реляционную метамодель базовых конструкций языка EXPRESS, а именно:

· элементарных базовых типов;

· перечислимых типов;

· ассоциативных связей между объектами;

· селективных типов;

· агрегатных типов;

· вложенных структур данных, основанных на базовых, перечислимых, ассоциативных, селективных и агрегатных типах данных;

· простых и сложных объектных типов в рамках модели множественного наследования;

· информационных схем.

Не менее существенными для практического применения являются часто противоречащие друг другу проблемы:

· выбора стратегии отображения в соответствии с контекстом использования семантики информационной модели;

· поддержки метаданных в реляционном представлении и их конструктивного применения в ходе пользовательских сессий;

· эффективности реализации объектных запросов и операций манипулирования объектами (создание, модификация, удаление);

· оптимизации используемых ресурсов, включая затраты памяти;

· сопровождаемости решений и их гибкости по отношению к возможной эволюции используемых прикладных моделей.

6.2 Отображение информационных схем

Вопрос о выборе стратегии отображения в рамках схемо-зависимого (СЗ) или схемо-независимого (СН) подходов является наиболее принципиальным для систематизации методов объектно-реляционного отображения и их адекватного применения в приложениях.

6.2.1 Схемо-независимая стратегия

Схемо-независимая стратегия ориентирована на использование единой реляционной схемы для представления произвольных прикладных данных, модели которых специфицированы на EXPRESS. Для приложений, оперирующих одновременно с несколькими перманентно изменяемыми прикладными моделями, применение схемо-независимая стратегии является наиболее предпочтительным. Сопровождение и администрирование реляционной базы данных с фиксированной системой таблиц, состав и структура которой не меняется, достаточно просты.

К издержкам стратегии следует отнести необходимость поддержки и использования словарей метаданных, без которых реализация промежуточного объектно-реляционного слоя невозможна. Сами словари также могут быть представлены в виде таблиц, хранящих информацию об исходных прикладных моделях и включенных в состав единой реляционной системы. Другим недостатком является относительно низкая эффективность выполнения базовых операций манипулирования объектами, поскольку их реализация сопряжена с необходимым дополнительным анализом сопутствующих метаданных.

6.2.2 Схемо-зависимая стратегия

Схемо-зависимая стратегия в большей степени ориентирована на приложения, оперирующие с единственной моделью данных, не изменяемой на протяжении всего жизненного цикла проекта. Организация реляционной системы в этом случае может отражать и учитывать особенности конкретной прикладной модели. Схемо-зависимая стратегией не исключается и одновременная поддержка нескольких моделей. Однако в силу сложности сопровождения и администрирования реляционных баз данных с большим количеством таблиц ее использование в этом случае может оказаться крайне обременительным.

Достоинством схемо-зависимой стратегии является возможность более эффективной реализации объектных запросов и операций манипулирования объектами за счет непосредственной адресации к таблицам с хранимыми данными, в отличие от схемо-независимой стратегии, где такая адресация осуществляется косвенно через таблицы метаданных.

Как разновидность схемо-зависимой стратегии может рассматриваться смешанная (СМ) стратегия, заключающаяся в организации системы таблиц по заданной прикладной модели при одновременном использовании словарей метаданных. При определенной избыточности в представлении данных такая стратегия обеспечивает более эффективную реализацию сложных запросов непосредственно средствами реляционной СУБД, поскольку вся необходимая метаинформация может также храниться в виде таблиц и быть доступной при обработке запросов.

6.3 Отображение наследования классов

Паттерны, предназначенные для отображения отношений простого наследования между классами, являются хорошо известными. В этой курсовой работе мы обсудим возможные варианты отображений в рамках развитой модели множественного наследования языка EXPRESS.

6.3.1 Паттерн OneInheritanceHierarchy-OneTable

Первый, наиболее простой паттерн OneInheritanceHierarchy-OneTable соответствует случаю отображения всех конкретных родственных классов, имеющих общий набор прародителей, в одну таблицу <Hierarchy>_Instances. Прародителем будем называть класс-предок, у которого нет собственных родителей.

В случае простого наследования данный паттерн трансформируется в стратегию представления конкретных классов в каждом дереве наследования одной реляционной таблицей. Атрибуты всех родственных классов, являющихся вершинами дерева, отображаются в столбцы данной таблицы. Если иерархия наследования классов в прикладной модели представлена несколькими деревьями, то каждому такому дереву будет соответствовать отдельная таблица.

В общем случае множественного наследования иерархия классов представляется набором таблиц, каждая из которых соответствует одному из сочетаний прародителей. Все атрибуты классов, объединенных единым набором прародителей, отображаются в столбцы конкретной таблицы из этого набора. Для записей объектов, в которых не определены какие-либо атрибуты, в соответствующих столбцах прописываются нулевые значения.

Достоинством паттерна является возможность эффективной реализации базовых операций над произвольными объектами без дополнительных расходов на сборку значений атрибутов из разных таблиц и их обратное распределение по ним. Также непосредственно реализуется полиморфное чтение. Единственная сложность состоит в определении типа запрашиваемых объектов. Простота поддержки и развития такой СЗ стратегии делает ее довольно привлекательной. Недостатком является излишнее потребление памяти за счет избыточного хранения нулевых значений, а иногда и необходимость индексирования большого числа столбцов для ускорения выполнения запросов по значениям отдельных атрибутов. При большой глубине наследования классов, что является типичным в научных и промышленных моделях STEP, это может оказаться критичным как для потребления памяти, так и для производительности.

6.3.2 Паттерн OneClass-OneTable

В паттерне OneClass-OneTable каждый конкретный или абстрактный классы в иерархии наследования представляются отдельной таблицей <Class>_Instances, при этом собственные атрибуты данного класса отображаются в ее столбцы. Для связи с наследуемыми атрибутами она хранит вторичные ключи соответствующих записей в таблицах родительских классов. В случае простого наследования -- один вторичный ключ, в случае множественного наследования -- несколько вторичных ключей, каждый из которых соответствует таблице одного из родителей.

Поскольку при множественном наследовании возможны неоднозначные ситуации, когда атрибуты одного и того же базового класса наследуются несколько раз, реализация данного паттерна сопряжена с анализом и разрешением подобных ситуаций. В языке EXPRESS допустимо лишь виртуальное наследование, при котором любые атрибуты базовых классов должны наследоваться единожды. Поэтому при анализе реконструируется основное дерево наследования, а ветви, приводящие к циклам, игнорируются в результате обнуления соответствующих вторичных ключей к записям в таблицах родительских классов. Случаи многократного наследования атрибутов обрабатываются автоматически и не требуют дополнительного анализа.

Паттерн обеспечивает хорошую производительность на операциях полиморфного чтения, однако реализация базовых операций над объектами сопряжена с расходами на сборку значений атрибутов из нескольких таблиц при чтении и их рассылку по таблицам при записи и модификации. При глубокой иерархии наследования такие издержки могут оказаться существенными.

Затраты памяти в реализации данного паттерна близки к оптимальным, поскольку хранение вторичных ключей не требует больших накладных расходов. Как элемент схемо-зависимой стратегии паттерн не обеспечивает простоту поддержки и эволюции сложных прикладных моделей с развитой иерархией наследования.

6.3.3 Паттерн OneInheritancePath-OneTable

Некоторые недостатки предыдущего паттерна компенсируются в результате сериализации таблиц классов по отношениям наследования. В паттерне OneInheritancePath-OneTable каждому конкретному классу соответствует своя таблица <Concrete_Class>_Instances, в столбцы которой отображаются все атрибуты класса, включая наследуемые от родителей.

Паттерн обеспечивает хорошую эффективность на базовых операциях чтения, записи, модификации, удаления, однако полиморфные операции оказываются достаточно дорогими, поскольку сопряжены с просмотром всех таблиц классов, наследуемых от заданного. Затраты памяти здесь оптимальны, поскольку не требуется хранение избыточных полей. Важным достоинством паттерна в ряде случаев оказывается равномерное распределение запросов и сопряженных с ними блокировок по таблицам схемы. В отличие от предыдущих паттернов наследования, в которых превалирующая нагрузка приходится на корневые таблицы прародителей, данный паттерн обеспечивает большую эффективность за счет более равномерного распределения записей.

Однако в отношении поддержки эволюции схем паттерн довольно критичен, поскольку все запросы, основанные на полиморфных операциях, требуют модификации с учетом каждого нового наследуемого класса, включаемого в прикладную модель.

6.3.4 Паттерн AllClasses-OneTable

Паттерн AllClasses-OneTable предполагает использование единой таблицы Instances для представления дескрипторов объектов всех классов. В столбцах таблицы хранятся идентификатор объекта и его тип. Контекст использования паттерна связан с представлением атрибутов классов в виде самостоятельных таблиц. В этом случае связь между таблицами экземпляров классов и значений их атрибутов осуществляется через внешние ключи записей объектов (см. раздел 6.4.2.2). Предполагается, что значения атрибутов одного и того же типа хранятся в единой таблице независимо от их вхождения в состав того или иного класса. Тем самым достигается существенная для схемо-независимой стратегии инвариантность реляционной схемы по отношению к прикладным моделям. Связь простого объекта с его классом осуществляется через внешний ключ записи в таблице классов Entities (см. раздел 6.5). Для сложных объектов предусмотрен внешний ключ записи в соответствующей таблице сложных классов Complex_Entities.

6.3.5 Паттерн BLOB

Паттерн BLOB также предполагает использование единой таблицы BLOB Instances для представления объектов всех классов. Однако в отличие от паттерна AllClasses-OneTable в данной таблице используется дополнительный столбец для хранения значений атрибутов, упакованных в бинарную или текстовую строку переменной длины. Задача упаковки значений в строку и их распаковки для клиентских приложений ложится непосредственно на промежуточный слой программного обеспечения. Хотя чтение и запись данных объекта осуществляются за одну операцию обращения к таблице, дополнительные расходы приходятся на обработку строк промежуточным слоем. По существу в этом случае BLOB стратегия объединяет в себе паттерны наследования, агрегации и ассоциации.

Возможны разновидности данного паттерна, связанные с различными способами представления строки значений атрибутов как в бинарном формате, так и в одном из текстовых метаформатов. В частности, применительно к метамодели EXPRESS стандарт STEP определяет формат текстового кодирования прикладных данных (ISO-10303-21) и несколько альтернативных способов XML разметки документов (ISO-10303-28), порождаемых соответствующей прикладной моделью данных, специфицируемой на языке EXPRESS.

Главным недостатком BLOB паттерна является невозможность разрешения запросов и реализации объектных операций непосредственно средствами реляционной СУБД. В данном случае она играет роль простого хранилища, а эти функции выполняет промежуточный слой. Как паттерн схемо-независимой стратегии он не требует больших затрат на поддержку реляционной схемы при эволюции прикладной модели, поскольку связанные с этими изменениями функции затрагивают лишь промежуточный слой.

6.4 Отображение атрибутов

Атрибуты классов представляются либо столбцами соответствующих таблиц объектов классов, либо самостоятельными таблицами. Как и в случае паттернов отображения классов, альтернативы представления атрибутов во многом определяются применяемой схемо-зависимой или схемо-независимой стратегией объектно-реляционного отображения. Рассмотрим их, следуя введенной классификации паттернов отображения атрибутов простых, селективных, агрегатных типов и ассоциаций.

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ