|
Технология WiMax
Технология WiMax
СОДЕРЖАНИЕ Введение 1. История развития проекта WIMAX 2. Задачи, цели, преимущества WIMAX 3. Принцип работы WIMAX 3.1 Физический уровень базового стандарта IEE 802.16 3.2 Стандарт IEE 802.16-2004 3.3 Режим WirelessMan- OFDM 3.4 Mesh- сеть 3.5 Стандарт IEE 802.16-2005 4. Режим работы WIMAX 5. Защита связи 6. Определение задания и цели работы Список литературы ВВЕДЕНИЕНа сегодняшний момент три основных требования к сетевым соединениям: высокая пропускная способность, надёжность, мобильность. Соединить все три основных критерия может только поколение беспроводных технологий WiMAX (Worldwide Interoperability for Microwave Access), стандарт IEEE 802.16. Современный мир не может без информации. Информационные магистрали сегодня не уступают по важности транспортным, они повсюду - и на суше, и на дне океана, и в космосе. Передача байта по линии связи стала не менее значимой, чем передача барреля нефти или кубометра газа. Но планете становится тесно от проводных линий связи. Эти пути уже мешают и их надо отбросить. Поэтому неудивительно, что беспроводные технологии переживают сегодня подлинный бум. Пользователям требуются все большие объемы трафика и скорости передачи данных - причем срочно. Современные мультимедийные приложения этому весьма способствуют. Ведь еще десять лет назад беспроводные локальные сети казались достаточно специальным инструментом. Сегодня - это массовый продукт, а термины Wi-Fi и WiMAX знают даже неспециалисты в связи. В августе 1998 года по инициативе Национальной испытательной лаборатории беспроводных электронных систем Национального института стандартов и технологии США (National Wireless Electronics Systems Testbed of the U.S. National Institute of Standards and Technology) встреча заинтересованных сторон, в результате которой комитет 802 IEEE организовал рабочую группу 802.16. С июля 1999 года группа приступила к регулярной работе. Изначально ее деятельность велась в трех направлениях: разработка стандарта для диапазона 10-66 ГГц (первоначально обозначался 802.16.1), для диапазона 2-11 ГГц (802.16.3), а также стандарта, регламентирующего совместную работу различных систем широкополосного беспроводного вещания (802.16.2). Уже в декабре 2001 года стандарт IEEE 802.16 «Air Interface for Fixed Broadband Wireless Access Systems» (воздушный интерфейс для фиксированных систем с широкополосным беспроводным доступом) был утвержден и 8 апреля 2002 года официально опубликован. Он описывал общие принципы построения систем широкополосного беспроводного доступа и сосредотачивался на диапазоне 10-66 ГГц. 10 сентября 2001 года увидел свет стандарт IEEE 802.16.2 «Coexistence of Fixed Broadband Wireless Access Systems» (сосуществование фиксированных систем широкополосного беспроводного доступа). Над более низкочастотным диапазоном работы продолжались чуть дольше - стандарт 802.16а «Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz» (модификации управления доступа к среде передачи и дополнительные спецификации физического уровня для диапазона 2-11 ГГц), регламентирующий работу в диапазоне 2-11 ГГц, был утвержден 29 января 2003 года, а 1 апреля опубликован. На рисунке 1 показано место стандарта 802.16 в иерархии стандартов IEEE 802.[1]. Место стандарта 802.16 в иерархии стандартов IEEE 802 Рис. 1 Физический и канальный уровни IEEE 802.16 Все стандарты группы 802.16 описывают два нижних уровня модели взаимодействия открытых систем (OSI) - физический и уровень контроля доступа к среде передачи (MAC - Medium Access Control) На языке эталонной модели взаимодействия открытых систем MAC-уровень является нижним подуровнем канального уровня в модели OSI. Верхним подуровнем данного уровня выступает Logical Link Control (LLC) - управление логическим соединением. Основная задача, решаемая на канальном уровне - сформировать двунаправленный логический канал между двумя точками и обеспечить качество услуг (уровень ошибок) независимо от качества передачи на физическом уровне. Однако терминологические понятия толкуются достаточно произвольно, и в стандарте IEEE 802.16 под термином MAC следует понимать канальный уровень со всеми присущими ему задачами.. Структура этих уровней представлена на рисунке 2. В стандартах этой группы идет речь о радиоинтерфейсах, методах модуляции и доступа к каналам, о системе управления потоками, о структурах передаваемых данных, о механизмах связи протоколов передачи данных верхних уровней (прежде всего ATM и IP) с протоколами физического уровня IEEE 802.16 и д.р. Будем рассматривать стандарт «снизу» - физического уровня. 1 ИСТОРИЯ РАЗВИТИЯ ПРОЕКТА WiMAXПервая версия стандарта IEEE 802.16-2001 была принята в декабре 2001 года, в стандарте изначально была отведена рабочая полоса 10-66 ГГц. Стандарт IEEE 802.16 описывал архитектуру широкополосной беспроводной связи, организованной по топологии «точка-многоточка» и ориентировался на создание стационарных беспроводных сетей масштаба города (WirelessMAN). Так как в стандарте IEEE 802.16-2001 на физическом уровне предполагалось использование всего одной несущей частоты, назван он был -- WirelessMAN-SC (Single Carrier).Для частот в диапазоне 10-66 ГГц характерно быстрое затухание сигнала и работа возможна только в зоне прямой видимости между передатчиком и приемником. Зато решается одна из главных проблем радиосвязи -- многолучевое распространение сигнала. В Стандарте было рекомендовано использовать модуляцию типа QPSK, 16-QAM или 64-QAM. В радиоканалах шириной 20, 25 и 28 МГц скорость передачи данных достигала 32-134 Мбит/с и дальность передачи составляла 2.5 км. Позже, в 2002 году в стандарте 802.16-2001 были выявлены погрешности, и появилось приложение 802.16с-2002, которое расширяло профили и корректировало их.Из-за трудностей построения беспроводной сети в зоне прямой видимости устройства стандарта 802.16 так и не получили широкого распространения и уже в январе 2003 года выпустили расширение 802.16а-2003, которое описывало использование частотного диапазона от 2 до 11 ГГц. В этом стандарте предусматривалось создание фиксированных беспроводных сетей масштаба мегаполиса и планировалось, что в дальнейшем он станет альтернативой наземным решениям широкополосного доступа для организации «последней мили» взамен xDSL, кабельных модемов и каналов T1/E1. Кроме того, предполагалось, что для формирования глобальной сети беспроводного доступа в Интернет к базовой сети стандарта 802.16а смогут подключаться точки доступа стандарта 802.11a/b/g.Основное отличие стандарта 802.16а -- это работа в частотном диапазоне 2-11 ГГц, для которого не требуется наличие прямой видимости между приемником и передатчиком. В виду этого зона покрытия беспроводных сетей 802-16a значительно шире, чем у сетей стандарта 802.16. Использование частотного диапазона 2-11 ГГц потребовало и существенного пересмотра техники кодирования и модуляции сигнала на физическом уровне. Оборудование 802.16а должно было работать с модуляцией QPSK, 16QAM, 64QAM и 256QAM, поддерживать скорость передачи информации 1-75 Мбит/с на сектор одной базовой станции на расстоянии от где-то 6-9 км в радиоканалах с изменяемой полосой пропускания от 1.5 до 20 МГц. Типовая базовая станции имела от 4 до 6 секторов.В стандарте 802.16a сохранили режим работы на одной несущей, который позволял работать как в условиях прямой видимости (LOS), так и вне ее (NLOS). Но основным здесь стала возможность работы с сигналом на основе технологии OFDM (Orthogonal Frequency Division Multiplexing)- ортогонального частотного мультиплексирования с 256-ю поднесущими и режим OFDMА (Orthogonal Frequency Division Multiple Access) -- технология многостанционного доступа с ортогональным частотным разделением каналов с 2048 поднесущими сразу с несколькими абонентами в режиме OFDM. Таким образом, при стандартном количестве поднесущих в 256 обеспечивалась одновременная работа 8 абонентов.В июле 2004 года был принят стандарт IEEE 802.16-2004, известный также как 802.16d или фиксированный WiMAX, который и объединил все эти нововведения. Но говорить в то время о полной совместимости оборудования не представлялось возможным. Из-за наличия разных режимов мультиплексирования SC, OFDM и OFDMА с разной шириной радиоканалов, а также временного и частотного режима дуплексирования FDD и TDD и ряда других требований оборудование каждого производителя так и осталось уникальным, а стоимость абонентских устройств была очень высокой. В силу этих обстоятельств оборудование фиксированного доступа стандарта IEEE 802.16-2004 используется в нишевом применение, там, где традиционные методы построения сетей абонентского доступа не эффективны или попросту невозможны.В конце 2005 года был принят стандарт IEEE 802.16е, известный так же как IEEE 802.16-2005 или мобильный WiMAX. Это был новый шаг в эволюции развития беспроводного широкополосного доступа в интернет Основное внимание здесь уделено вопросам поддержки мобильных абонентов, и в частности хендоверу, и роумингу между сетями, построенными на различных беспроводных стандартах. Роуминг позволяет при передвижении абонента на скорости до 120 км/ч «бесшовно» переключаться между базовыми станциями (точно так же как это происходит в сетях сотовой связи). В мобильном WiMAX применяется Scalable OFDMA -- масштабируемый OFDM-доступ и возможна работа как в условиях прямой видимости так в ее отсутствие. Для сетей Mobile WiMAX выделяются частотные диапазоны: 2,3-2,5; 2,5-2,7; 3,4-3,8 ГГц.На сегодняшний день в мире реализованы и успешно функционируют беспроводные широкополосные сети на основе Mobile WiMAX, в том числе первыми в России свои сети развернули компании «Скартел» -- бренд Yota (сети построены в Москве, Санкт-Петербурге, Уфе, Краснодаре, Сочи, Никарагуа) и Комстар OTC (сеть в Москве). Конкурентами 802.16e являются все мобильные технологии третьего поколения 3G, например, EV-DO. И если стандарт IEEE 802.16d является протоколом операторского класса, то мобильный WiMAX ориентирован на конечных пользователей, и в данном случае он представляет собой альтернативу стандартам 802.11 a/b/g. Имея ноутбук или КПК со встроенным WiMAX модемом, и подключившись к сети, пользователь сможет постоянно оставаться на связи в любой точке города, где обеспечивается зона покрытия WiMAX сети. Базовая станция Mobile WiMAX способна поддерживать до 1000 абонентов одновременно! Схема развития технологии WiMaxРис. 1.1В дополнение к основным стандартам, рабочая группа IEEE 802.16 разработала ряд других документов, где рассматриваются другие весьма важные вопросы. Это такие дополнения, как: - 802.16f-2005 -- Информационная база управления (Management Information Base); - 802.16g-2007 -- Процедуры и сервисы уровня управления (Management Plane Procedures and Services); - 802.16k-2007 -- Поправки к 802.16 (Bridging of 802.16).В стадии разработки находятся: - 802.16h -- Улучшенный механизм сосуществования при безлицензионной работе (Improved Coexistence Mechanisms for License-Exempt Operation); - 802.16i -- Информационная база управления для мобильных сетей (Mobile Management Information Base); - 802.16j -- Спецификация многопролетных ретрансляционных систем (Mul-tihop Relay Specification); - 802.16m -- Улучшенный беспроводной интерфейс (Advanced Air Interface).Часто, говоря о стандарте IEEE 802.16, подразумевают WiMAX. Аббревиатура WiMAX (Worldwide Interoperability for Microwave Access) расшифровывается как: протокол всемирной сети широкополосной радиосвязи. Название придумано в международной организации WiMAX-форум, в ряды которой входят ведущие телекоммуникационные компании и производители оборудования, такие как: Alvarion, Cisco, Intel, Airspan Networks, Fujitsu, Samsung, Huawei, Proxim Corporation и др.). Однако не следует забывать, что на самом деле WiMAX, рассматривает только часть режимов стандарта IEEE 802.16.WiMAX-форум был основан 11 апреля 2003 года с целью содействия разработке беспроводного оборудования, используемого в широкополосных сетях и скорейшему развертыванию этих сетей во всем мире. WiMAX-форум отвечает за сертификацию оборудования стандарта IEEE 802.16, а также за подготовку и разработку спецификаций, призванных обеспечить совместимость оборудования разных производителей. Такие крупнейшие поставщики элементной полупроводниковой базы, как Intel, Fujitsu, и др. ведут ее разработку для всех производителей оборудования, а те в свою очередь концентрируют свои усилия на производстве оборудования со стандартной элементной базой. По данным аналитических изданий, сегодня члены WiMAX-форума представляют собой более 80% рынка среди производителей оборудования для ШБД.[2].В июне 2008 года было объявлено о создании нового стратегического консорциума -- Open Patent Alliance (ОРА), в который вошли такие гиганты широкополосной индустрии, как: Cisco, Alcatel-Lucent, Intel, Clearwire, Samsung и Sprint. Цель создания альянса - продвижение дальнейшей стандартизации в области технологий WiMAX, снижения стоимости на услуги и оборудование, а также расширение их многообразия. Немного позже к ним присоединились Alvarion и Huawei. За это время был создан так называемый патентный пул --соглашение о взаимном использовании межу участниками патентов, которыми сможет воспользоваться любой из членов альянса по предсказуемой цене.Одним из наиболее активных членов альянса WiMAX Forum является компания Intel, которая участвует во всех его начинаниях - от постановки задачи, заканчивая ратификацией стандартов и разработкой конечного оборудования. Сейчас Intel сотрудничает с компаниями, уже развернувшими предварительно стандартизованные широкополосные беспроводные сети WiMAX более чем в 125 странах. Они обеспечивают широкий диапазон вариантов - от стационарных систем беспроводного доступа до двухточечных систем передачи масштаба предприятия.Сейчас Intel сотрудничает с компаниями, уже развернувшими предварительно стандартизованные широкополосные беспроводные сети WiMAX более чем в 125 странах. Они обеспечивают широкий диапазон вариантов - от стационарных систем беспроводного доступа до двухточечных систем передачи масштаба предприятия. Сегодня WiMAX-форум насчитывает более 500 членов, 17 из них из России и стран СНГ.[4]. 2 ЗАДАЧИ,ЦЕЛИ,ПРЕИМУЩЕСТВА WiMAXДля продвижения и развития технологии WiMAX был сформирован WiMAX-форум на базе рабочей группы IEEE 802.16, созданной в 1999 году. В форум вошли такие фирмы, как Nokia, Harris Corporation, Ensemble, Crosspan и Aperto. К маю 2005 года форум объединял уже более 230 участников. В том же году Всемирный съезд по вопросам информационного сообщества (World Summit on Information Society, WSIS) сформулировал следующие задачи, которые были возложены на технологию WiMAX. Задачи технологий WiMAX:1. Обеспечить при помощи WiMAX доступ к услугам информационных и коммуникационных технологий для небольших поселений, удалённых регионов, изолированных объектов, учитывая при этом, что в развивающихся странах 1,5 миллиона поселений с числом жителей более 100 человек не подключены к телефонным сетям и не имеют кабельного сообщения с крупными городами;2. Обеспечить при помощи WiMAX доступ к услугам информационных и коммуникационных технологий более половины населения планеты в пределах своей досягаемости, учитывая при этом, что общее число пользователей Интернета в 2005 году составляло приблизительно 960 млн. человек, или около 14,5 процента всего населения Земли. Цель технологии WiMAX заключается в том, чтобы предоставить универсальный беспроводный доступ для широкого спектра устройств (рабочих станций, бытовой техники "умного дома", портативных устройств и мобильных телефонов) и их логического объединения локальных сетей. Надо отметить, что технология имеет ряд преимуществ:1. По сравнению с проводными (xDSL, T1), беспроводными или спутниковыми системами сети WiMAX должны позволить операторам и сервис-провайдерам экономически эффективно охватить не только новых потенциальных пользователей, но и расширить спектр информационных и коммуникационных технологий для пользователей, уже имеющих фиксированный (стационарный) доступ; 2. Стандарт объединяет в себя технологии уровня оператора связи (для объединения многих подсетей и предоставления им доступа к Интернет), а также технологии "последней мили" (конечного отрезка от точки входа в сеть провайдера до компьютера пользователя), что создает универсальность и, как следствие, повышает надёжность системы; 3. Беспроводные технологии более гибки и, как следствие, более просты в развёртывании, так как по мере необходимости могут масштабироваться; 4. Простота установки как фактор уменьшения затрат на развертывание сетей в развивающихся странах, малонаселённых или удалённых районах; 5. Дальность охвата является существенным показателем системы радиосвязи. Не требует прямой видимости между объектами сет, благодаря использованию технологии OFDM создает зоны покрытия в условиях отсутствия прямой видимости от клиентского оборудования до базовой станции, при этом расстояния исчисляются километрами; 6. Технология WiMAX изначально содержит в себе протокол IP, что позволяет легко и прозрачно интегрировать её в локальные сети;7. Технология WiMAX подходит для фиксированных, перемещаемых и подвижных объектов сетей на единой инфраструктуре. 3 ПРИНЦИП РАБОТЫ WiMAX3.1Физический уровень базового стандарта IEEE 802.16
Как уже отмечалось, стандарт IEEE 802.16 описывает работу в диапазоне 10-66 ГГц систем с архитектурой «точка-многоточка» (из центра - многим). Это - двунаправленная система, то есть предусмотрены нисходящий (downlink, от базовой станции к абонентам) и восходящий (uplink, к базовой станции) потоки. При этом каналы подразумеваются широкополосные (порядка 25 МГц), а скорости передачи - высокие (например, 120 Мбит/с). Тракт обработки данных и формирования выходного сигнала для передачи через радиоканал в стандарте IEEE 802.16 достаточно обычен для современных телекоммуникационных протоколов (см. рис. 3) и практически одинаков для восходящих и нисходящих соединений. Входной поток данных скремблируется - подвергается рандомизации «Рандомизация» применяется для того, чтобы избежать длинных последовательностей повторяющихся нулей или единиц., то есть на него накладывается (XOR) псевдослучайная последовательность (ПСП), вырабатываемая с помощью линейного регистра сдвига длины 15 с характеристическим многочленом и начальным заполнением (см. рис. 3.1) Далее скремблированные данные кодируют с помощью помехоустойчивых кодов (FEC-кодирование Forward Error Correction - прямая защита от ошибок.). При этом используется одна из четырех схем: код Рида-Соломона (над ), код Рида-Соломона с дополнительным свёрточным кодом (скорость ) (схема свёрточного кодирования показана на рис. 3.2), код Рида-Соломона с дополнительным контролем четности () и блочный турбокод. Размер кодируемого информационного блока и число избыточных бит не фиксированы - эти параметры можно задавать в зависимости от условий среды и требований к качеству предоставления услуг (QoS). Первые две схемы кодирования обязательны для всех устройств стандарта, остальные два алгоритма - дополнительные. Тракт формирования выходного сигнала в стандарте IEEE 802.16 (нисходящий канал) Рис. 3.1 Генерация ПСП Схема кодирования сверточным кодом Рис. 3.2 Рис. 3.3 В диапазоне 10-66 ГГц стандарт IEEE 802.16 предусматривает схему с модуляцией одной несущей (в каждом частотном канале). Стандарт допускает три типа квадратурной амплитудной модуляции: четырехпозиционную QPSK и 16-позиционную 16-QAM (обязательны для всех устройств), а также 64-QAM (опционально). Кодированные блоки преобразуются в модуляционные символы (каждые 2/4/6 бит определяют один символ QPSK/16-QAM/64-QAM) в соответствии с приведенными в стандарте таблицами - каждой группе из 2/4/6 бит ставится в соответствие синфазная () и квадратурная () координаты. Далее последовательность дискретных значений в каналах и преобразуется посредством так называемого синусквадратного фильтра (square-root raised cosine filter) Передаточная функция идеального синусквадратного фильтра записывается как при ; при ; , где - коэффициент избирательности (по стандарту IEEE 802.16 ), - частота Найквиста, равная половине частоты дискретизации. в непрерывные (сглаженные) сигналы. Фильтрованные потоки и поступают непосредственно в квадратурный модулятор, где формируется выходной сигнал как функция , - несущая частота. Далее сигнал усиливается и передается в эфир. На приемной стороне все происходит в обратном порядке. Данные на физическом уровне передаются в виде непрерывной последовательности кадров. Каждый кадр имеет фиксированную длительность - 0,5; 1 и 2 мс, поэтому его информационная емкость зависит от символьной скорости и метода модуляции. Кадр состоит из преамбулы (синхропоследовательности длиной 32 QPSK-символа), управляющей секции и последовательности пакетов с данными (см рис. 3.3.). Поскольку определяемая стандартом IEEE 802.16 система двунаправленная, необходим дуплексный механизм. Он предусматривает как частотное (FDD Frequency division duplex), так и временное (TDD Time division duplex) разделение восходящего и нисходящего каналов. При временном дуплексировании каналов кадр делится на нисходящий и восходящий субкадры (их соотношение в кадре может гибко меняться в процессе работы, в зависимости от потребной полосы пропускания для нисходящих и восходящих каналов), разделенные специальным интервалом (рис. 3.4а). При частотном дуплексировании восходящий и нисходящий каналы транслируются каждый на своей несущей (рис. 3.4б). Структура кадра в стандарте IEEE 802.16 для систем с временным (а) и частотным (б) дуплексированием каналов Рис. 3.4 В нисходящем канале информация от базовой станции передается в виде последовательности пакетов (метод временного мультиплексирования - TDM Time division multiplex) (рис. 3.5). Для каждого пакета можно задавать метод модуляции и схему кодирования данных - то есть выбирать между скоростью и надежностью передачи. TDM-пакеты передаются одновременно для всех абонентских станций, каждая из них принимает весь информационный поток и выбирает «свои» пакеты (декодируя заголовки пакетов и определяя адрес назначения). В нисходящем субкадре пакеты выстраиваются в очередь так, что самые помехозащищенные передаются первыми (управляющая секция всегда передается посредством QPSK-модуляции). Если этого не сделать, абонентские станции с плохими условиями приема, которым предназначаются наиболее защищенные пакеты, могут потерять синхронизацию в ожидании своей порции информации. Пакеты в нисходящем субкадре следуют друг за другом без интервалов и предваряющих их заголовков. Чтобы абонентские станции могли отличить один пакет от другого, в управляющей секции передаются карты нисходящего (DL-MAP) и восходящего (UL-MAP) каналов. В карте нисходящего канала указана длительность кадра, номер кадра, число пакетов в нисходящем субкадре, а также точка начала и тип профиля каждого пакета. Точка начала отсчитывается в так называемых физических слотах, каждый физический слот равен четырем модуляционным символам. Профиль пакета - это список его параметров, включая метод модуляции, тип FEC-кодирования (с параметрами схем кодирования), а также диапазон значения отношения сигнал/шум в приемном канале конкретной станции, при котором данный профиль может применяться. Список профилей в виде специальных управляющих сообщений (дескрипторов нисходящего и восходящего каналов, DCD/UCD) транслируется базовой станцией с периодом в 10 с, присеем каждому профилю присваивается номер, который и используется в карте нисходящего канала. Структура нисходящего канала Рис. 3.5 Абонентские станции получают доступ к среде передачи посредством механизма временного разделения каналов (TDMA - Time division multiple access) (структура восходящего канала представлена на рис. 3.6). Для этого в восходящем канале субкадре для каждой передающей АС (абонентской станции) базовая станция резервирует специальные временные интервалы - слоты. Информация о распределении слотов между АС записывается в карте восходящего канала UL-MAP, транслируемой в каждом кадре. UL-MAP функционально аналогична DL-MAP - в ней сообщается сколько слотов в субкадре, точка начала и идентификатор соединения для каждого из них, а также типы профилей всех пакетов. Сообщение UL-MAP текущего кадра может относиться как к данному кадру, так и к последующему. Скорость модуляции (частота символов) в восходящем канале должна быть такой же, как и в нисходящем. Отметим, что, в отличие от нисходящих TDM-пакетов, каждый пакет в восходящем канале начинается с преамбулы - синхропоследовательности длиной 16 или 32 QPSK-символа. В восходящем канале, кроме назначенных базовой станцией (БС) слотов для определенных АС, предусмотрены интервалы, в течение которых АС может передать сообщение для первичной регистрации в сети или для запроса канала/изменения полосы пропускания канала. Поскольку эти сообщения спонтанны, в данных интервалах возможны коллизии, вызванные одновременной работой передатчиков двух и более АС. Принцип борьбы с коллизиями аналогичен используемому в стандарте 802.11 - после того, как АС решила, что ей нужно зарегистрироваться/запросить канал, она не начинает трансляцию в первом же предназначенном для этого интервале. В АС есть генератор случайных чисел (ГСЧ), выбирающий значения из некоего диапазона от до . Так, если , ГСЧ выбирает числа в диапазоне 0..15, например 11. Далее АС отсчитывает 11 интервалов, предназначенных для регистрации/запроса канала и только в 12-м выходит в эфир. Если передача прошла успешно и БС приняла запрос, она в определенный период ответит специальным сообщением. В противном случае АС считает попытку неудачной и повторяет процедуру, только интервал для ГСЧ удваивается. Структура восходящего канала Рис. 3.6 Такая последовательность действий продолжается до тех пор, пока не будет получен ответ от БС. Максимальный размер диапазона возможных значений ГСЧ ограничен - при его достижении он вновь принимает минимальное значение. Примечательно, что в режиме FDD стандарт IEEE 802.16 допускает применение как дуплексных, так и полудуплексных абонентских станций. Последние не способны одновременно принимать и передавать информацию. Для полудуплексных АС, которые в силу конструктивных особенностей сначала принимают информацию и лишь затем передают свои данные, в нисходящем FDD кадре предусмотрена область с механизмом TDMA - для таких станций информация передается в определенных временных интервалах (рис. 3.7). Причем нисходящие пакеты, передаваемые в режиме TDMA, обязательно снабжают преамбулой - синхрпоследовательностью длиной 16 QPSK-символов, чтобы полудуплексные абонентские станции могли при необходимости восстановить синхронность. То есть фактически и в FDD-режиме частично используется принцип доступа к среде передачи в режиме разделения времени. Важная особенность стандарта IEEE 802.16 - система контроля радиотракта, благодаря которой базовая станция способна контролировать синхронность, несущую частоту и мощность каждой АС и при необходимости изменять/корректировать эти параметры посредством служебных сообщений. Физический уровень стандарта IEEE 802.16 занимается непосредственной доставкой потоков данных между БС и абонентскими станциями. Все же задачи, связанные с формированием структур этих данных, а также управлением работой системы IEEE 802.16, решаются на канальном уровне. Нисходящий канал в случае FDD при работе с полудуплексными абонентскими станциями Рис. 3.7 Канальный уровень стандарта IEEE 802.16 Оборудование стандарта IEEE 802.16 призвано формировать транспортную среду для различных приложений (сервисов), поэтому первая задача, решаемая в IEEE 802.16, - это механизм поддержки разнообразных сервисов верхнего уровня. Разработчики стандарта стремились создать единый для всех протокол канального уровня, независимо от особенностей физического канала. Это существенно упрощает связь терминалов конечных пользователей с городской сетью передачи данных - физически среды передачи в разных фрагментах WMAN могут быть различны, но структура данных едина. В одном канале могут работать (не единовременно) сотни различных терминалов еще большего числа конечных пользователей. Этим пользователям необходимы самые разные сервисы (приложения) - потоки голоса и данных с временным разделением, соединения по протоколу IP, пакетная передача речи через IP (VoIP) и т.п. Более того, качество услуг (QoS) каждого отдельного сервиса не должно изменяться при работе через сети IEEE 802.16. Алгоритмы и механизмы доступа канального уровня должны уверенно решать все эти задачи. Структурно канальный уровень IEEE 802.16 подразделяется на три подуровня (см. рис. 2) - подуровень преобразования сервиса CS Convergence Sublayer, основной подуровень CPS Common Part Sublayer и подуровень защиты PS Privacy Sublayer. На подуровне защиты реализуются функции, обеспечивающие криптографическую защиту данных и механизмы аутентификации (подробнее этот подуровень будет рассмотрен в дальнейшем). На подуровне преобразования сервиса происходит трансформация потоков данных протоколов верхних уровней для передачи через сети IEEE 802.16. Для каждого типа приложений верхних уровней стандарт предусматривает свой механизм преобразования, но пока описаны и вошли в спецификацию IEEE 802.16 только два - для работы в режиме ATM и для пакетной передачи. Под пакетной передачей подразумевают достаточно широкий набор протоколов, включая IP. Цель работы на CS-подуровне - оптимизация передаваемых потоков данных каждого приложения верхнего уровня с учетом их специфики. Поэтому важнейшая задача, решаемая на данном подуровне, - классификация пакетов/ячеек. От результатов ее зависит и оптимизация передаваемых потоков, и выделение полосы пропускания для каждого из них. Для оптимизации транслируемых потоков предусмотрен специальный механизм удаления повторяющихся фрагментов заголовков PHS Payload Header Suppression. Действительно, и в ATM, и в пакетном режиме данные передаются отдельными порциями - ячейками и пакетами, соответственно. Каждая такая порция данных состоит, в общем случае, из заголовка и поля данных - фиксированных размеров для ATM (5 и 48 байт, соответственно) и достаточно произвольных при пакетной передаче. Во многих случаях заголовки пакетов и ячеек содержат повторяющуюся информацию, излишнюю при трансляции посредством протокола IEEE 802.16. Механизм PHS позволяет избавиться от передачи избыточной информации: на передающем конце пакеты приложений в соответствии с определенными правилами преобразуются в структуры данных канального уровня IEEE 802.16, на приемном - восстанавливаются. На основном подуровне канального уровня формируются пакеты данных (MAC PDU MAC Protocol Data Unit - блоки данных канального уровня), которые затем передаются на физический уровень и транслируются через канал связи. Пакет MAC PDU (далее PDU) включает заголовок и поле данных (его может и не быть), за которым может следовать контрольная сумма CRC (рис. 3.8). Заголовок PDU занимает 6 байт и может быть двух типов - общий и заголовок запроса полосы пропускания. Общий заголовок используется в пакетах, у которых присутствует поле данных. В общем заголовке указывается идентификатор соединения CID, тип и контрольная сумма заголовка, а также приводится информация о поле данных (см. табл. 1). Заголовок запроса полосы применяется, когда АС просит у БС выделить или увеличить ей полосу пропускания в нисходящем канале. При этом в заголовке указывается CID и размер требуемой полосы (в байтах, без учета заголовков физических пакетов). Поля данных после заголовков запроса полосы быть не может. Пакет канального уровня IEEE 802.16 Рис. 3.8 Таблица 1 Структура заголовка MAC PDU (от старшего к младшим битам) |
Поле | Длина, бит | | Тип заголовка = 0 (признак общего заголовка) | 1 | | Признак шифрования поля данных | 1 | | Тип поля данных | 6 | | Не используется | 1 | | Признак наличия CRC | 1 | | Индекс ключа шифрования | 2 | | Не используется | 1 | | Длина пакета, включая заголовок (в байтах) | 11 | | Идентификатор соединения CID | 16 | | Контрольная сумма заголовка (задающий многочлен ) | 8 | | |
Поле данных может содержать подзаголовки канального уровня, управляющие сообщения и собственно данные приложений верхних уровней, преобразованные на CS-подуровне. В стандарте описано три типа подзаголовков канального уровня - упаковки, фрагментации и управления предоставлением канала. Подзаголовок упаковки используется, если в поле данных одного PDU содержатся несколько пакетов верхних уровней; подзаголовок фрагментирования - если, напротив, один пакет верхнего уровня разбит на несколько PDU. Подзаголовок управления предоставлением канала предназначен, чтобы АС сообщала БС изменение своих потребностей в полосе пропускания (число байт в восходящем канале для определения соединения, сообщение о переполнении выходной очереди в АС, требование регулярного опроса со стороны БС для выяснения потребной полосы). Управляющие сообщения - это основной механизм управления системой IEEE 802.16. Всего зарезервировано 256 типов управляющих сообщений, из них 30 описано в стандарте IEEE 802.16. Описание профилей пакетов, управление доступом, механизмы криптографической защиты, динамическое изменение работы системы и т.д. - все функции управления, запроса и подтверждения реализуются через управляющие сообщения. Рассмотренные выше карты входящего/нисходящего каналов (UL-/DL-MAP) также являются управляющими сообщениями. Формат управляющих сообщений прост -- поле типа сообщения (1 байт) и поле данных (параметров). Управление соединениями в IEEE 802.16 Ключевой момент в стандарте IEEE 802.16 - это понятие «сервисного потока» и связанные с ним понятия «соединение» и «идентификатор соединения» (CID). Поскольку система IEEE 802.16 - лишь транспортная среда, ее инфраструктура фактически формирует коммуникационные каналы для потоков данных различных приложений верхних уровней (сервисов) - передача видеоданных, АТМ-потоки, IP-потоки, передача телефонных мультиплексированных пакетов типа E1 и т.д. Каждое из таких приложений обладает своими требованиями к скорости передачи, надежности (качеству обслуживания), криптозащите и т.д. Соответственно, и данные каждого приложения следует передавать через транспортную среду с учетом этой специфики. Сервисным потоком в стандарте IEEE 802.16 называется поток данных, связанный с определенным приложением. В этом контексте соединение - это установление логической связи на канальных уровнях на передающей и приемной стороне для передачи сервисного потока. Каждому соединению присваивается 16-ти разрядный идентификатор CID, с которым однозначно связаны тип и характеристики соединения. В частности, по запросу предоставления/изменения полосы пропускания со стороны АС базовая станция стазу понимает, с каким сервисным потоком имеет дело и какие условия передачи ему нужно обеспечить. Так при начальной инициализации в сети каждой АС назначается три CID для служебных сообщений трех уровней. Принципиально, что одна АС может устанавливать множество различных соединений с различными CID. Характерный пример - когда связь крупного офиса с телекоммуникационным узлом организована через систему IEEE 802.16. В этом случае одна АС в офисе может поддерживать совершенно разные приложения - телефонию, телевидение, доступ в Интернет и в распределенную корпоративную сеть и т.д. Каждое из этих приложений предъявляет свои требования к QoS и скорости передачи, которые нужно удовлетворить. Посредством CID базовая станция узнает, с чем имеет дело, и предоставляет необходимый ресурс. Не менее важным для понимания идеологии IEEE 802.16 является принцип предоставления доступа к каналу по запросу (DAMA Demand Assigned Multiple Access). Ни одна АС не может ничего передавать, кроме запросов на регистрацию и предоставление канала, пока БС не разрешит ей этого - т.е. отведет временной интервал в восходящем канале и укажет его расположение в карте UL-MAP. Абонентская станция может запрашивать как определенный размер полосы в канале, так и просить об изменении уже предоставленного ей канального ресурса. Стандарт IEEE 802.16 предусматривает два режима предоставления доступа - для каждого отдельного соединения (GPC Grants per Connection) и для всех соединений определенной АС (GPSS Grants per subscriber station). Режим GPSS обязателен для всех устройств в диапазоне 10-66 ГГц. Очевидно, что первый механизм обеспечивает большую гибкость, однако второй существенно сокращает объем служебных сообщений и требует меньшей производительности от аппаратуры. Запросы могут быть как спорадическими для БС, так и планированными. В первом случае запросы реализуются посредством пакетов, состоящих из заголовка запроса, передаваемых на конкурентной основе в специально выделенном для них интервале восходящего канала. Процедура плановых запросов полосы в восходящем канале называется опросом polling - БС как бы опрашивает АС об их потребностях. Реально это означает, что базовая станция предоставляет конкретной АС интервал для передачи запроса о предоставлении/изменении полосы, т.е. никакой конкуренции уже нет. Опрос может быть в «реальном времени» - интервалы для запроса предоставляются АС с тем же периодом, с каким у нее может возникнуть потребность в изменении условий доступа (например, в каждом кадре). Этот режим удобен для приложений, когда пакеты данных следуют с фиксированным периодом, но их размер не стабилен (например, видео-MPEG). Другой вариант опроса - вне «реального времени». В этом случае БС предоставляет АС интервал для запроса также периодически, но этот период существенно больше - например, 1 с. Характерное приложение, для которого эффективен этот механизм, - FTP-протокол.
Страницы: 1, 2
|
|