|
Сканеры: виды, устройство, принципы работы
Рис. 3а Образование потенциальной ямы при приложении напряжения к затвору При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и, в конце концов, могут полностью его скомпенсировать. Так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние (так что действительно "ничего не изменилось" - почти!) - за тем исключением, что на границе раздела образуется тонкий слой электронов. Рис. 3б Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в яму, в которой потенциальная яма глубже. Пусть теперь рядом с затвором расположен ещё один, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 3б). Так вот, если только затворы расположены достаточно близко, их потенциальны ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если её потенциал выше (т. е. если она глубже), в полном соответствии с упомянутым выше фундаментальным принципом. Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Рис. 3в Простейший трёхфазный ПЗС-регистр. Заряд в каждой потенциальной яме разный! Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3в). Это и есть простейший трёхфазный регистр сдвига на ПЗС. Рис. 3г Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов. Тактовые диаграммы работы такого регистра показаны на рис. 3г. Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра. Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 3д). Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме (если она вообще образовалась). Рис. 1д Вид на регистр "сверху". Канал переноса в боковом направлении ограничивается стоп каналами. Понятно, что на полную передачу заряда из одной ямы в другую требуется время, так что при высокой тактовой частоте (а для ТВ стандарта она составляет в регистре считывания 7-13 МГц в зависимости от числа элементов по горизонтали) этого времени может и не хватить. Величина, показывающая, какая часть зарядового пакета передалась в следующий элемент ПЗС, называется эффективностью переноса е. Часто пользуются и связанной с ней величиной неэффективности h = 1-e. Однако частотные ограничения - это ещё полбеды. Беда же в том, что для структуры ПЗС, обсуждавшейся до сих пор, все события происходят в очень тонкой (десятки ангстрем) области у границы раздела окисел-кремний. Сколь бы не была совершенной кристаллическая структура подложки, граница раздела - нарушение однородности кристалла, а из физики твёрдого тела известно, что всякое нарушение однородности кристаллической решётки приводит к возникновению разрешённых энергетических уровней в запрещённой зоне. Ясно, что такое нарушение, как граница раздела, даром не проходит. И образующихся при этом энергетических уровней столько, что они образуют квазинепрерывный спектр, а значит, среди них есть такие, которые способны захватывать электроны из зоны проводимости (ловушки), причём время, через которое захваченный электрон вернётся обратно в зону проводимости, зависит от энергии ловушки (и абсолютной температуры). И получается, что, пока над данной точкой границы раздела нет заряда (а это когда-нибудь, да так), часть ловушек освобождается, эмитируя электрон обратно в зону проводимости, а когда придёт очередной зарядовый пакет - мгновенно заполняется, чтобы снова освободить захваченные электроны после того, как этот зарядовый пакет ушёл, так что освобождённые электроны попадают в другой, пришедший позднее, зарядовый пакет. Более того, эмиссия электронов с ловушек обратно в зону проводимости, как всякий тепловой процесс, подвержена термодинамической флуктуации и привносит в распределение зарядов по ячейкам шум переноса. Кроме того, часть электронов, попавшая на глубокий уровень с длительным временем эмиссии, может вовсе не вернуться, а называется фиксированными потерями, и особенно заметно при переносе малых зарядовых пакетов. И, наконец, через квазинепрерывный спектр ловушек происходит интенсивная генерация темнового тока (тепловой процесс спонтанного образования электронно-дырочных пар - к сожалению, процесс неизбежный при температуре, отличной от абсолютного нуля, а наличие уровней в запрещённой зоне резко повышает его вероятность). Все эти неприятности, связанные с поверхностным каналом переноса, удалось полностью (или почти полностью) устранить инженерам фирмы Philips, в 1972 году предложившим ПЗС со скрытым каналом. Это решение, разом убивавшее несколько зайцев, оказалось настолько удачным, что с тех пор все ПЗС выпускаются только со скрытым каналом. От обычного он отличается тем, что в поверхностной области кремния создаётся тонкий (порядка 0,3 - 0,5 мкм) слой с проводимостью противоположного подложке типа и с концентрацией примеси такой, чтобы он мог полностью обедняться при подаче на него напряжения через соответствующий контакт. Что же происходит в такой структуре? Для простоты предположим, что скрытый канал имеет однородную концентрацию примеси по всей глубине. При полном обеднении скрытого канала в нём остаётся нескомпенсированный заряд легирующей примеси (будем считать её примесью N-типа, т. е. остаются положительно заряженные атомы примеси). Кроме того, обеднённая область будет простираться и в подложку, как и для ПЗС с поверхностным каналом, причём в подложке заряд нескомпенсированной примеси - отрицательный. Распределение потенциала при таком ступенчатом распределении объёмного заряда, как следует из уравнения Лапласа, будет кусочно-параболическим с максимумом потенциала, лежащем на некоторой глубине от границы раздела (фактически вблизи металлургической границы p-n перехода скрытый канал - подложка; Рис. 4а. |
Рис.4б. Распределение потенциалов в ПЗС со скрытым каналов при отсутствии сигнального заряда, с сигнальным зарядом и при фиксации поверхностного потенциала. | | |
Всё. Задача решена. Ведь теперь сигнальные электроны собираются именно в области максимума потенциала, нейтрализуя по мере накопления атомы примеси (зелёная линия на рис. 2б; это, в частности, означает, что максимальная плотность накопленного заряда не может превышать поверхностной концентрации примеси - порядка 1,5*1012 см-2), и не достигают поверхности. А значит, уходят все отрицательные моменты, связанные с взаимодействием зарядового пакета с границей раздела. Для дальнейшего изложения отметим ещё, что потенциал канала в максимуме пропорционален дозе легирования канала. Степень совершенства кристаллической решётки в современных материалах весьма высока, и ныне эффективность переноса в ПЗС со скрытым каналом (собственно, далее речь будет идти только о них) достигает в лучших приборах потрясающих величин 99,9999% (или h = 10-6) на перенос, т. е. после тысячи переносов искажения от неэффективности составляют 0,1%. Достигается это не только из-за крайне низкой плотности ловушек в объёме полупроводника, но и из-за того, что перенос происходит на некотором удалении от затворов, а значит, становятся заметными двумерные эффекты - электрическое поле одного затвора проникает под соседний, создавая тем самым дрейфовую составляющую переноса (тянущее поле), что вытягивает заряд гораздо быстрее, чем просто тепловая диффузия, так что частотные ограничения эффективности в диапазоне частот, характерном для телевизионных матриц, практически незаметны. Отметим ещё одно отличие ПЗС со срытым каналом от ПЗС с поверхностным каналом: уровни управляющих напряжений для них биполярные, т. е. напряжение барьера - отрицательное. Причём при некотором его значении потенциал на границе раздела достигает нуля и дальше изменяться не может, так как дырки из стоп канала заполняют поверхность, закорачивая её на стопор и экранируя канал от дальнейшего изменения электрического поля затвора. Это явление называется фиксацией поверхностного потенциала (pin) и используется в ПЗС с виртуальной фазой и т. н. приборах МРР (multi-pin phase), о чём мы ещё поговорим. И ещё: скрытый канал невозможно закрыть; как только наступает фиксация, дальнейшее изменение потенциала канала прекращается. Теперь, прежде чем рассказать о том, как из одного регистра сделать двумерную матрицу, несколько слов о том, как, собственно, выглядит стандартный телевизионный сигнал черно-белого телевидения. Мы не будем углубляться в детали того или иного ТВ стандарта, а рассмотрим общие принципы формирования сигнала. Рис. 5. ТВ сигнал Посмотрим на этот рис. 5, где схематично изображён ТВ сигнал. Он содержит видеосигналы отдельных строк, разделённые интервалом обратного хода по строке (строчный гасящий интервал), необходимым для того, чтобы электронный луч, как в кинескопе, так и в передающей камере (вспомним, что этот стандарт возник достаточно давно, в эпоху вакуумных приборов) успел вернуться к началу следующей сроки. Во время этого интервала подается и строчный синхроимпульс, формируется не самим датчиком изображения, а замешивается в сигнал электронными схемами камеры). Уровень синхроимпульсов принят за 0, уровень черного в видеосигнале составляет 0,33 В, уровень гасящего - 0,3 В (30 мВ разницы образуют т. н. защитный интервал), максимальный уровень видеосигнала (уровень белого) - 1,00 В. Когда переданы сигналы всех строк одного поля, начинается формирование кадрового гасящего интервала. Строчные синхроимпульсы в это время продолжают формироваться, чтобы не сбивать схемы строчной развёртки кинескопа (в реальности их частота на короткое время, равное 2,5 длительности строки, удваивается, а полярность инвертируется, чтобы обозначить кадровый синхроимпульс), а видеосигнал не формируется. Затем, по окончании кадрового гасящего, начинается прямой ход по кадру для следующего поля. По принятому, например, в Европе стандарту период строчной развёртки составляет 64 мкс, длительность прямого хода по строке - 52 мкс, длительность обратного хода по строке - 12 мкс, а длительность кадрового гасящего - 25 строк. При этом в каждом поле имеется 312,5 строки, из которых 287,5 - активные, т. е. имеющие видеосигнал (полстроки возникает из-за того, что полное число строк в кадре для чересстрочной развёртки нечётное - 625). Теперь вернёмся к структуре двумерной матрицы ПЗС. Простейший её вариант изображён на рис. 6а. В нём можно выделить два вертикальных регистра сдвига на ПЗС, образующие секцию накопления и секцию хранения с равным числом строк (каждая строка секции образована одной тройкой электродов), горизонтальный регистр сдвига и выходное устройство. Рассмотрим подробнее работу такой структуры. Рис.6а Структура двумерной матрицы ПЗС В течение времени прямого хода по кадру секция накопления стоит, т. е. на неё подаются неизменные напряжения, формирующие потенциальные ямы только под одним электродом каждой тройки, скажем, под электродом первой фазы (VS1), причём потенциальные ямы образуются во всех элементах всех строк секции. По горизонтали отдельные ячейки накопления отделены стоп каналами (выделены на рисунке красным цветом). Изображение, проецируемое на секцию накопления, вызывает фотогенерацию - образование электронно-дырочных пар. При этом фотогенерированные электроны остаются в потенциальной яме, дырки же, соответственно, уйдут в подложку или в вдоль поверхности в стоп каналы. Таким образом, под действием света в ячейках накапливается зарядовый рельеф, т. е. в каждой ячейке собирается заряд, пропорциональный её освещённости и времени накопления. По окончании прямого хода по кадру на обе секции подаются тактовые импульсы, вызывающие синхронный перенос заряда, при этом важно (и это показано на рисунке), что обе секции образуют непрерывный регистр сдвига. После числа тактов, равного числу строк в каждой секции (напомним, что каждая строка образована тремя электродами), весь накопленный зарядовый рельеф целиком переместится в секцию памяти, закрытую от света, а секция накопления будет очищена от заряда. Этот перенос секции в секцию происходит достаточно быстро (фактически он занимает малую часть времени обратного хода по кадру). Теперь, во время следующего цикла накопления (это следующее поле кадровой развёртки), секция накопления накапливает следующий кадр изображения, а из секции памяти заряды построчно, во время обратного хода по строке, передаются в горизонтальный регистр), каждый элемент регистра имеет зарядовую связь с соответствующим столбцом секции памяти, и за один раз передаётся одна строка, и затем выводятся в выходное устройство регистра за время прямого хода по строке, формируя видеосигнал. О выходном устройстве мы подробнее поговорим ниже. Сразу отметим одно важное обстоятельство. Первые матрицы выглядели именно так, как показано на рисунке, с электродами, сформированными из металла (молибдена). Понятно, что для обеспечения зарядовой связи и возможно полного переноса заряда от затвора к затвору зазор между ними не мог быть большим, что приводило к крайне низкой чувствительности: действительно, почти вся площадь элемента оказывалась непрозрачной для света. Кроме того, при ширине зазора 2 микрона и суммарной его длине для всей матрицы несколько метров весьма вероятно замыкание металлических фаз друг на друга, что приводит к потере работоспособности матрицы. Радикальным выходом стало предложенное в 1974 г. К. Секеном и М. Томпсеттом из Bell Labs использование электродов из поликристаллического кремния, прозрачного почти во всём видимом диапазоне. В таких приборах для формирования трёхфазной системы электродов используются три последовательно наносимых на подложку уровня поликремния, каждый для своей фазы, которые после формирования электродного рисунка окисляются. Чтобы при окислении поликремния не изменялась толщина под затворного диэлектрика, в современных приборах он делается двухслойным - окисел + нитрид кремния (Si3N4). Первые же приборы с поликремниевыми затворами превзошли по чувствительности вакуумные трубки и даже фотоэмульсию. Кроме того, выращенный на каждом слое поликремния изолирующий окисел (см рис. 6а) резко снизил вероятность межфазного замыкания, а межфазный зазор уменьшился до 0,2 мкм - толщины межфазного окисла. Теперь, мне кажется, настало время поговорить о достоинствах и ограничениях ПЗС вообще и данной структуры в частности. Разумеется, общие преимущества перехода от вакуумных приборов сразу к ИС высокой степени интеграции очевидны и не нуждаются в комментариях. Остановимся на менее очевидных (а для непосвящённых, возможно, и просто новых) моментах. Прежде всего, отметим жёсткий растр. В трубках растр создавался сканирующим электронным лучом, и его геометрическое качество зависело от массы факторов - линейности напряжений развёрток, стабильности питающих напряжений, температурных эффектов и т. д. В твердотельных приборах растр задаётся с высокой точностью в процессе изготовления структуры прибора, так что геометрические искажения получаемого изображения определяются только качеством оптики. С жёсткостью растра связаны и такие достоинства, как отсутствие микрофонного эффекта (т. е. изменения параметров электровакуумного прибора из-за акустического воздействия) и нечувствительность к магнитным полям - а ведь искажения в трубках, если не принимать специальных мер, могли порой возникать даже от изменения её положения относительно магнитного поля Земли! С жёстким растром - и вообще с тем, что это интегральная схема связано и другое преимущество ПЗС, особенно важное для профессиональных цветных камер - совмещение растров датчиков в трех матричных камерах цветного ТВ. Я напомню, как получается цветной сигнал в таких камерах (будь то на ПЗС или на трубках): световой поток от объектива с помощью специальной дихроичной призмы расщепляется на три - соответственно красный, зелёный и синий, поступающие каждый на свой датчик. Ясно, что малейшее рассогласование растров этих датчиков приводит к появлению цветовой окантовки на результирующем изображении. А теперь представьте себе, каких ухищрений стоит добиться совмещения растров для трёх электронно-лучевых приборов! Жёсткий растр и связанная с этим жёсткая привязка выходного сигнала к тактовой частоте упростила и конструкцию одно-матричных цветных камер, в которых для получения информации о цвете используется нанесение непосредственно на фоточувствительную секцию специального фильтра - мозаичного или полосового - так что каждый элемент ПЗС передаёт сигнал только одного какого-то цвета, а полный цветной сигнал получается за счёт соответствующей обработки выходного сигнала ПЗС. Ясно, что однозначная привязка сигнала каждого элемента с сетке частот упрощает эту обработку (нелинейность развёртки в трубках вынуждала формировать специальный индексный сигнал, для чего конструкция мишени трубок для одно-трубочных камер цветного ТВ сильно усложнялась). Ещё одно достоинство - отсутствие эффекта выжигания. В трубках чрезмерно яркий свет (например, случайно попавший в поле зрения яркий источник света или, не приведи бог, Солнце), приводил к выжиганию - длительному, а иногда и необратимому изменению параметров фото катода - и изображение этого источника (причём негативное) ещё долгое время можно было наблюдать, даже не открывая объектив... Ещё один неприятный эффект, свойственный трубкам (кстати, и фоторезисторным матрицам) и полностью отсутствующий в ПЗС - инерционность. Многие, вероятно, видели хвост, тянущийся за изображением яркой лампы при панорамировании камеры. Именно так проявляется инерционность трубки - даже после исчезновения освещенности данной точки фото катода сигнал с неё не спадает мгновенно. В матрицах ПЗС, накопленный сигнальный заряд полностью выводится при переносе кадра - и к началу следующей экспозиции секция накопления как новенькая. По сравнению с твердотельными приборами с координатной адресацией (КА) ПЗС сильно выигрывают в однородности сигнала, так как все зарядовые пакеты детектируются одним усилителем (вспомним, что в приборах с КА каждый столбец имеет свой усилитель - со своим коэффициентом усиления). Помимо одинакового для всех зарядовых пакетов коэффициента преобразования заряд-напряжение, усилитель ПЗС характеризуется и значительно меньшим по сравнению с матрицами с КА шумом (это связано с величиной ёмкости преобразования, о чём мы ещё поговорим). И ещё одно достоинство по сравнению с конструкцией, о которой речь пойдёт ниже: вся площадь секции накопления является фоточувствительной, т. е. коэффициент заполнения (fill factor) равен 100%. Эта особенность делает приборы данной организации монополистами в астрономии и вообще везде, где идёт борьба за чувствительность. При всей несомненной простоте, у матриц с рассмотренной организацией (они называются ПЗС с кадровым переносом) есть один существенный недостаток - собственно, сам кадровый перенос (КП). Тактовая частота, подаваемая на секции во время КП, составляет, как правило, несколько сот Кгц (редко 1-2 МГц), что связано с большой ёмкостью фаз секций (до 10 000 пФ) и тем, что сами электроды имеют распределённые параметры (RC), и тактовые импульсы при их высокой частоте могут просто не дойти до середины электрода. А раз так, то КП занимает существенное время - доли мс. Если теперь учесть, что во время КП секция накопления остаётся освещённой, то яркие участки изображения успевают дать вклад в чужой зарядовый пакет даже за то короткое время, когда он проходит через них. Так на сигнале появляется смаз - вертикальный след от ярких участков изображения размером во весь кадр. Для борьбы с ним применяются разные ухищрения. Так, в малокадровых системах (прикладные системы с низкой кадровой частотой; яркий пример, опять же, - астрономия, где время накопления составляет порой часы) используется механический затвор, или же, если есть такая возможность, просто отключают источник света. В цифровых камерах для компенсации смаза используются достаточно простые алгоритмы обработки изображения (просто запоминается отдельно картинка смаза - её можно, например, получить при нулевом времени накопления - и затем она вычитается из "суммарного" изображения). Рис. 6б. Прибор с межстрочным переносом (МП) Однако радикально проблема смаза решается в приборах с межстрочным переносом (МП), завоевавших доминирующее положение на рынке бытовой видеотехники. Их организация изображена на рис. 6б. В отличие от матриц с КП, функции накопления заряда и его переноса здесь разделены. Заряд из элементов накопления (это, как правило, фотодиоды - они тоже обладают ёмкостью и способны накапливать заряд!) передаётся в закрытые от света ПЗС-регистры переноса, то есть секция переноса как бы вставлена в секцию накопления. Теперь перенос зарядового рельефа всего кадра происходит за один такт, и смаз, связанный с переносом, не возникает. Чтобы побороть ещё и искажения, возникающие из-за попадания в каналы переноса носителей, генерируемых в глубине подложки (если только не применяется фильтр ИК отсечки - а в видеокамерах он всегда применяется), к матрице с МП добавляется ещё одна секция памяти с соответствующим числом элементов (рис. 6в). Смаз в такой матрице со строчно-кадровым переносом (СКП) пренебрежимо мал. Рис. 6в. Секция памяти По сравнению с матрицами с КП фактор заполнения в матрицах с МП или СКП примерно вдвое меньше, так как около половины площади фоточувствительной поверхности закрыто от света. Чтобы повысить эффективность сбора фотонов, используется микрорастр - массив небольших линзочек. |
Рис.7. Микрорастр в ПЗС с межстрочным переносом значительно повышает эффективность сбора фотонов | | |
Он формируется очень просто: на поверхность пластины с уже формированными структурами матрицы наносится слой оптической легкоплавкой пластмассы, из которого методом фотолитографии вырезаются изолированные квадратики, лежащие над каждым элементом. Зазор между отдельными квадратиками невелик. Затем пластина нагревается, пластмасса подплавляется и поверхность отдельных квадратиков приобретает близкую к сферической форму, фокусируя приходящий на её поверхность свет точно на фоточувствительный элемент матрицы. Получается вот что 4.1.1 Параметры и характеристики ПЗС Перейдём рассмотрим параметры и характеристики ПЗС. Прежде всего, остановимся на их спектральных характеристиках - зависимости выходного сигнала от длины волны, или, что эквивалентно, квантовом выходе - количестве фотоэлектронов на один фотон падающего излучения. Спектральная характеристика (СХ) ПЗС определяется, причём мультипликативно, двумя факторами - прохождение света через электродную структуру и фотогенерация, вызванная поглощением света непосредственно в полупроводнике (внутренний квантовый выход). Начнём с последнего. Поглощение света в полупроводнике описывается коэффициентом поглощения - величиной, обратной длине, на которой интенсивность излучения падает в е раз. Далее, фотогенерацию вызывают только фотоны с энергией, превышающей ширину запрещённой зоны - около 1,2 эВ (что соответствует длине волны чуть больше 1,05 мкм - это ближний ИК диапазон). Фотоны с большей длиной волны просто не поглощаются и соответственно не дают вклада в выходной сигнал, а длина ~1,05 мкм оказывается красной границей фотоэффекта в кремнии. При уменьшении длины волны коэффициент поглощения постепенно растёт; так, при l = 1 мкм свет затухает в е раз на 100 мкм, при l = 0,7 мкм (красный цвет) - на 5 мкм, а при l = 0,5 мкм (зелено-голубой) - на 1 мкм. Что же из этого следует? Вспомним, что глубина обеднённого слоя (глубина, на которую распространяется электрическое поле затвора вглубь полупроводника) - около 5 мкм. Ясно, что для света, который целиком поглощается внутри этого слоя (при длине волны менее примерно 0,6 мкм), внутренний квантовый выход будет почти 100%, так как происходит мгновенное разделение электронно-дырочных пар электрическим полем. Для более длинных волн значительная доля фотонов поглощается в нейтральной подложке, откуда носители могут попасть в потенциальные ямы только за счёт тепловой диффузии - на что шансов тем меньше, чем глубже родился каждый конкретный электрон. Надо ещё учесть, что сама подложка по своим свойствам неоднородна. Так, практически все западные приборы изготавливаются на эпитаксиальных подложках с толщиной эпитаксиального слоя 10-12 мкм, а российские ПЗС - на подложках с внутренним геттерированием (это специальный процесс, при котором дефекты кристаллической решётки загоняются вглубь подложки, так что поверхностный слой толщиной около 20 мкм становится свободным от дефектов). В обоих этих случаях время жизни свободных носителей вне поверхностного слоя чрезвычайно мало, и они просто не успевают попасть в потенциальные ямы. Это ещё больше снижает внутренний квантовый выход ПЗС для длинноволнового участка спектра. Для очень коротких длин волн (менее 270 нм) энергия фотонов достаточна для генерации двух электронно-дырочных пар, так что для них внутренний квантовый выход, на первый взгляд, может превышать 100%. Увы, нет в мире совершенства, и граница раздела окисел-кремний - яркий тому пример. При коротких длинах волн коэффициент поглощения становится настолько большим, а длина поглощения настолько маленькой, что становится существенным вклад поверхностной рекомбинации, то есть только что рождённые пары успевают рекомбинировать, не успев разделиться. Так что в области коротких длин волн внутренний квантовый выход тоже падает, хотя и не до нуля. Рис.8. Сечение трёхфазного ПЗС с электродами из поликристаллического кремния (вверху, а) и с виртуальной фазой (внизу, б). Около половины площади ячейки свободно от поликремния Поговорим о пропускании света электродной структурой. Как можно судить по рис. 8а, где схематично изображено сечение ПЗС, свет, попадая в полупроводник, проходит через несколько слоёв с различными оптическими характеристиками, так что неизбежна его интерференция, благо, что толщина этих слоёв соизмерима с длиной волны. И действительно, СХ ПЗС довольно причудлива. Далее, поликристаллический кремний, из которого сделаны электроды, совершенно непрозрачен в области длин волн до 430-450 нм (синий и фиолетовый цвета). В итоге СХ обычного трёхфазного ПЗС с поликремниевыми затворами выглядит так, как показано на рис. 6 красной линией. Рис. 9. Спектральные характеристики абсолютного квантового выхода: обычного ПЗС (красный), ПЗС с люминофорным покрытием (желтый), с освещением с обратной стороны подложки (зеленый) и с виртуальной фазой (синий). Использование фотодиодов в матрицах МП и СКП значительно улучшает СХ ПЗС, особенно в коротковолновой части спектра, поскольку уходят проблемы, связанные с электродами. Именно это обстоятельство позволяет таким приборам успешно работать в вещательных и бытовых камерах цветного телевидения. В камерах прикладного и научного направления, где доминируют всё же приборы с КП, применяются совершенно другие подходы. Самый простой - нанесение люминофора, специального вещества, прозрачного для длинных волн, но преобразующего коротковолновый свет в кванты с большей длиной волны. Этот приём позволяет расширить СХ ПЗС в синюю и УФ область спектра (на рис. 9) показано жёлтым цветом), не затрагивая, впрочем, средне- и длинноволновую часть СХ. Кроме того, в ряде применений, особенно в астрономии, требуется глубокое охлаждение приборов (о необходимости чего мы ещё поговорим), которое люминофорное покрытие не выдерживает. Второй способ, пожалуй, самый трудоёмкий и дорогой, но именно он позволяет добиться фантастических результатов. Состоит он в том, что кристалл ПЗС, уже после изготовления, утоньшается до толщины 10 мкм и менее (и это при размере кристалла в несколько сантиметров!), а свет падает на обратную сторону подложки, специальным образом обработанную. При столь тонкой подложке носители успевают добраться до потенциальных ям (напомним, что они простираются на глубину до 5 мкм), а полное отсутствие каких бы то ни было электродов гарантирует, что практически весь свет, за исключением потерь на отражение, проникает в кремний. Квантовая эффективность таких матриц (зелёная кривая на рис. 6) достигает иногда 90%, а спектральный диапазон простирается от 180 до 950 нм. Именно такие матрицы, несмотря на дороговизну (порой несколько десятков тысяч долларов - хотя, что это за деньги, если сам телескоп стоит сотни миллионов!), применяются в большинстве серьёзных астрономических проектов, включая космический телескоп "Хаббл" или недавно построенную Южную Европейскую Обсерваторию в Чили с несколькими 8-м телескопами. И, наконец, третий способ улучшения спектральных характеристик ПЗС - виртуальная фаза, способ, предложенный в 1980 году Ярославом Хинечеком, в то время работавшим в фирме Texas Instruments, для американского проекта Galileo по запуску космического аппарата к Юпитеру. Суть этого способа в том, что один из электродов обычного ПЗС заменяется на мелкий слой p-типа (виртуальный затвор) непосредственно на поверхности кремния, замкнутый на стоп каналы (сам Хинечек модифицировал двухфазный ПЗС; автору ближе ПЗС с виртуальной фазой, полученные из обычных трёхфазных - см. рис. 5б). Доза канала под виртуальным затвором делается больше, чем под тактовыми затворами. Вспомним то, что говорилось про ПЗС со скрытым каналом по поводу фиксации поверхностного потенциала и зависимости глубины потенциальной ямы от дозы легирования канала. Структура с виртуальным затвором, замкнутым на подложку, с точки зрения канала переноса не отличается от состояния фиксации в обычном ПЗС со скрытым каналом. Если к тому же выбрать дозу легирования канала в области виртуальной ямы надлежащим образом, то потенциал канала в ней будет средним между ямой и барьером под тактовыми электродами, так что условия для тактируемого переноса заряда сохраняются. Достоинства такой структуры несомненны. По сравнению с обычными ПЗС, в ней около половины площади ячейки свободны от поликремния, отсюда высокая чувствительность в синей и УФ области спектра (теоретически даже и до мягкого рентгена). Вместе с тем достигается она при освещении с фронтальной стороны подложки, что явно положительным образом сказывается на их цене. Ещё ПЗС с виртуальной фазой по принципу действия относятся к приборам с МРР, но об этом ниже, там, где речь пойдёт о темновом токе. Я не мог не упомянуть здесь ПЗС с виртуальной фазой, поскольку именно этим типом приборов я имею честь заниматься уже многие годы (я и не обещал быть беспристрастным...). Эти приборы, в частности, уже много лет используются в системах ориентации российских космических аппаратов (звёздные датчики), и именно на них в 1986 г. впервые в мире было получено детальное изображение кометы Галлея (проект ВЕГА), которое даже попало на почтовые марки некоторых стран. Поговорим теперь о других параметрах ПЗС (про неэффективность переноса и спектральные характеристики мы уже поговорили). Здесь будут обсуждаться как сами параметры, так и те меры, которые применяются для их улучшения. 4.1.2 Параметры ПЗС 4.1.2.1 Темновой ток Как уже упоминалось, темновой ток - это результат спонтанной генерации электронно-дырочных пар и есть явление неизбежное, однако бороться с ним можно. Дело в том, что теоретическая величина темнового тока для кремния (если брать в расчёт только прямую генерацию через запрещённую зону) крайне мала, и на самом деле темновой ток в ПЗС (как и обратные токи в других кремниевых приборах) определяется двустадийной генерацией через промежуточные энергетические уровни в запрещённой зоне. Понятно, что чем меньше концентрация этих уровней - а она определяется качеством исходного кремния, чистотой реактивов и степенью совершенства технологии - тем меньше темновой ток. Понятно также, что граница раздела, где этих уровней заведомо много, даёт заметно больший вклад в темновой ток, чем объём. И вот здесь-то и надо вспомнить про МРР-приборы. Их отличие от обычных ПЗС в том, что под одной из тактовых фаз доза канала увеличена, соответственно и потенциал канала при фиксации будет выше. Таким образом, даже если на всех фазах напряжение на затворе таково, что поверхностный потенциал фиксирован, в канале переноса потенциальный рельеф сохраняется, а значит, возможно, локализованное накопление зарядовых пакетов. Поверхность же замкнута на подложку и исключается из процесса генерации темнового тока. В настоящее время типовые значения темнового тока для лучших западных ПЗС составляют при комнатной температуре доли нА/см2, или несколько сотен (иногда тысяч) электронов на ячейку в секунду. И если для вещательного и бытового ТВ (время накопления 20 или 40 мс) такой темновой ток незаметен, то для научных применений, где регистрируются потоки в десяток фотонов на элемент, даже столь низкий темновой ток неприемлем. Действительно, время накопления в малокадровых системах, скажем, флуоресцентной микроскопии достигает минут, а в астрономии, когда нужно получить спектр звезды 20-й величины (совершенно типовое дело), - часов. В этом случае на помощь приходит охлаждение матриц. Как всякий термодинамический процесс, темновой ток сильно зависит от абсолютной температуры; принято считать, что при уменьшении температуры на каждые 7-8 градусов он уменьшается вдвое. Для глубокого охлаждения (в астрономических системах) используются азотные криостаты, где матрицы охлаждаются до -100оС. Для более простых систем применяется термоэлектронное охлаждение с использованием батарей Пельтье, которые способны обеспечить перепад в 70оС при подаче напряжения в 5-6 В, так что температура кристалла при комнатной наружной оказывается около -40оС, а темновой ток снижается до ~1 электрона на ячейку в секунду. Эти батареи столь компактны, что монтируются непосредственно в один корпус вместе с кристаллом ПЗС. Такие охлаждаемые приборы широко выпускаются как в США (например, фирмой SITe Technology или Hamamatsu Photonics) и в Европе (EEV, Великобритания), так и в России (фирма "Электрон-Оптроник", С.-Петербург). Ну и, наконец, в цифровых системах на ПЗС, поскольку характеристика его отличается высокой линейностью, можно просто запоминать темновой сигнал (при данной температуре и данном времени накопления), а затем вычитать его из результирующего. 4.1.2.2 Неоднородность чувствительности Ячейки ПЗС имеют неодинаковую чувствительность, т. е. даже при абсолютно однородной освещённости сигнал с них разный (иногда этот эффект называют геометрическим шумом). Величина этой неоднородности невелика и обычно не превышает 1-5% (для разных типов приборов), так что, скажем, в обычных ТВ камерах ею можно пренебречь. В научных системах, где требуется высокая фотометрическая точность, применяют довольно простой алгоритм коррекции неравномерности. Поскольку чувствительность каждого индивидуального элемента - фиксированная величина, то для её коррекции при некоторой равномерной освещённости запоминают сигналы со всех элементов прибора - и используют их как коэффициенты коррекции при всех последующих экспозициях. Предварительно, разумеется, проводят коррекцию темнового тока. 4.1.2.3 Шумы Шумит сам световой поток. То есть число фотоэлектронов, накопленное в ячейке, определено с точностью до квадратного корня из их числа (статистика Пуассона). Например, зарядовый пакет в 10000 электронов от кадра к кадру будет флуктуировать со среднеквадратическим отклонением в 100 электронов. Точно такой же статистике подвержен и темновой сигнал, и, следовательно, суммарный (световой + темновой). Это, однако, не снимает задачи снижения шумов собственно ПЗС, поскольку часто приходится работать с сигналами в десяток-другой фотонов на ячейку (к счастью, не в ТВ системах). Для качественных приборов, где низки темновой ток и неэффективность переноса, доминирующим источником шума будет выходное устройство. Обратимся ещё раз к рис. 4а и посмотрим на выходное устройство. Оно состоит из ёмкости считывания, как правило, диода, транзистора сброса Q1 и выходного усилителя (обычно это двухкаскадный истоковый повторитель с высоким входным импедансом). Работает такое выходное устройство так. Импульс сброса соединяет диод с источником опорного напряжения Vref., после чего транзистор сброса закрывается, и диод оказывается плавающим, т. е. его потенциал может изменяться при поступлении в него заряда - и он изменяется при следующем такте переноса заряда в регистре. Это изменение потенциала передаётся на выход прибора через усилитель. Так вот, фундаментальным свойством системы ключ - конденсатор (в случае ПЗС это транзистор Q1 и плавающая диффузия) является то, что каждый раз после размыкания ключа исходный потенциал считывающей ёмкости будет разным, причём среднеквадратическая величина этого шума (он называется установочным) равна (kT/C)1/2, а эквивалентный шумовой заряд - (kTC)1/2, где k - постоянная Больцмана, Т - абсолютная температура, а С - ёмкость считывающего узла. При комнатной температуре установочный шум равен 400C1/2?, если С - в пикофарадах. При этом сам сигнал пропорционален 1/C. Стало быть, чем меньше ёмкость, на которой детектируется заряд, тем больше отношение сигнал/установочный шум для данного считывающего устройства. Именно здесь кроется преимущество ПЗС по сравнению с предшествующими датчиками, где заряд с одного элемента попадал на общую для всего столбца шину.
Страницы: 1, 2, 3
|
|