Рефераты
 

Мой компьютер

Мой компьютер

Введение

Человеческое общество по мере своего развития прошло этапы овладения веществом, затем энергией и, наконец, информацией.

С самого начала человеческой истории возникла потребность передачи и хранения информации. Для передачи информации сначала использовался язык жестов, а затем человеческая речь.

Для хранения информации стали использоваться наскальные рисунки, а в IV тысячелетии до нашей эры появилась письменность и первые носители информации (шумерские глиняные таблички и египетские папирусы).

Начиная примерно с XVII века в процессе становления машинного производства на первый план выходит проблема овладения энергией.

Сначала совершенствовались способы овладения энергией ветра и воды (ветряные мельницы и водяные колеса), а затем человечество овладело тепловой энергией (в середине XVIII века была изобретена паровая машина, а в конце XIX века -- двигатель внутреннего сгорания).

В конце XIX века началось овладение электрической энергией, были изобретены электрогенератор и электродвигатель. И наконец, в середине XX века человечество овладело атомной энергией.

Овладение энергией позволило перейти к массовому машинному производству потребительских товаров, было создано индустриальное общество.

В информационном обществе главным ресурсом является информация, именно на основе владения информацией о самых различных процессах и явлениях можно эффективно и оптимально строить любую деятельность.

В настоящее время развитые страны мира (США, Япония, страны Западной Европы) фактически уже вступили в информационное общество, другие же, в том числе и Россия, находятся на ближних подступах к нему.

В качестве критериев развитости информационного общества можно выбрать три:

наличие компьютеров,

• уровень развития компьютерных сетей,

количество населения, занятого в информационной сфере, а также использующего информационные и коммуникационные технологии в своей повседневной деятельности.

Таким образом, компьютер и компьютерные технологии являются основой повседневной жизни. А значит каждый человек, заинтересованный в своём успехе и карьерном росте, должен иметь представление о том, что такое компьютер и как с ним работать.

Именно этому и посвящена моя работа.

1. Что такое компьютер

1.1 Что такое компьютер

Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Это связано с тем, что первые компьютеры создавались как устройства для вычислений, грубо говоря, как усовершенствованные, автоматические арифмометры. Принципиальное отличие компьютеров от арифмометров и других счетных устройств (счет, логарифмических линеек и т.д.) состояло в том, что арифмометры могли выполнять лишь отдельные вычислительные операции (сложение, вычитание, умножение, деление и др.), а компьютеры позволяют проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции - программе. Кроме того, для хранения данных, промежуточных и итоговых результатов вычислений компьютеры содержат память.

Хотя компьютеры создавались для численных расчетов, скоро оказалось, что они могут обрабатывать и другие виды информации - ведь практически все они могут быть представлены в числовой форме. Для обработки различной информации на компьютере надо иметь средства для преобразования нужного вида информации в числовую форму и обратно. Сейчас с помощью компьютеров не только проводятся числовые расчеты, но и подготавливаются к печати книги, создаются рисунки, кинофильмы, музыка, осуществляется управление заводами и космическими кораблями и т.д. Компьютеры превратились в универсальные средства для обработки всех видов информации, используемых человеком.

1.2 Представление информации в компьютере

Числовая форма. Как говорилось выше, компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т.д.) для обработки на компьютере должна быть преобразована в числовую форму. Скажем, чтобы перевести в цифровую форму звук, можно через небольшие промежутки времени измерять интенсивность звука, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например «наложить» друг на друга звуки от разных источников. После этого результат можно преобразовать обратно в звуковую форму.

Кодировки символов. Для обработки на компьютере текстовой информации обычно при вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся соответствующие изображения букв. Соответствие между набором букв и числами называется кодировкой символов. Наиболее часто используемые на IВМ РС кодировки символов описаны в главах 10 и 32.

Двоичная система счисления. Как правило, все числа внутри компьютера представляются с помощью нулей и единиц, а не десяти цифр, как это привычно для людей. Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом их устройство получается значительно более простым. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной для людей десятичной форме - все необходимые преобразования могут выполнить программы, работающие на компьютере.

Биты и байты. Единицей информации в компьютере является одни бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Как правило, команды компьютеров работают не с отдельными битами, а с восемью битами сразу. Восемь последовательных битов составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных (256 = 2). Более крупными единицами информации являются килобайт (сокращенно обозначаемый Кбайт), равный 1024 байтам (1024=2), мегабайт (сокращенно обозначаемый Мбайт), равный 1024 Кбайтам и гигабайт (Гбайт), равный 1024 Мбайтам. Для ориентировки скажем, что если на странице текста помещается в среднем 2500 знаков, то 1 Мбайт- это примерно 400 страниц, а 1 Гбайт - 400 тыс. страниц.

1.3 Как работает компьютер

Еще при создании первых компьютеров в 1945 г. знаменитый математик Джон фон Нейман описал, как должен быть устроен компьютер, чтобы он был универсальным и эффективным устройством для обработки информации. Эти основы конструкции компьютера называются принципами фон Неймана. Сейчас подавляющее большинство компьютеров в основных чертах соответствует принципам фон Неймана.

Устройства компьютера. Прежде всего, компьютер, согласно принципам фон Неймана, должен иметь следующие устройства:

· арифмепгическо-логическое устройство, выполняющее арифметические и логические операции;

· устройство управления, которое организует процесс выполнения программ;

· запоминающее устройство, или память для хранения про

· грамм и данных;

· внешние устройства для ввода-вывода информации.

Память компьютера должна состоять из некоторого количества пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компьютера.

Вот каковы должны быть связи между устройствами компьютера (одинарные линии показывают управляющие связи, двойные - информационные).

Принципы работы компьютера. В общих чертах работу компьютера можно описать так. Вначале с помощью какого-либо внешнего устройства в память компьютера вводится программа. Устройство управления считывает содержимое ячейки памяти, где находится первая инструкция (команда) программы, и организует ее выполнение. Эта команда может задавать выполнение арифметических или логических операций, чтение из памяти данных для выполнения арифметических или логических операций или запись их результатов в память, ввод данных из внешнего устройства в память или вывод данных из памяти на внешнее устройство.

Как правило, после выполнения одной команды устройство управления начинает выполнять команду из ячейки памяти, которая находится непосредственно за только что выполненной командой. Однако этот порядок может быть изменен с помощью команд передачи управления (перехода). Эти команды указывают устройству управления, что ему следует продолжить выполнение программы, начиная с команды, содержащейся в некоторой другой ячейке памяти. Такой «скачок», или переход, в программе может выполняться не всегда, а только при выполнении некоторых условий, например, если некоторые числа равны, если в результате предыдущей арифметической операции получился нуль и т.д. Это позволяет использовать одни и те же последовательности команд в программе много раз (т.е. организовывать циклы), выполнять различные последовательности команд в зависимости от выполнения определенных условий и т.д., т.е. создавать сложные программы.

Таким образом, управляющее устройство выполняет инструкции программы автоматически, т.е. без вмешательства человека. Оно может обмениваться информацией с оперативной памятью и внешними устройствами компьютера. Поскольку внешние устройства, как правило, работают значительно медленнее, чем остальные части компьютера, управляющее устройство может приостанавливать выполнение программы до завершения операции ввода-вывода с внешним устройством. Все результаты выполненной программы должны быть ею выведены на внешние устройства компьютера, после чего компьютер переходит к ожиданию каких-либо сигналов внешних устройств.

Особенности современных компьютеров. Следует заметить, что схема устройства современных компьютеров несколько отличается от приведенной выше. В частности, арифметическо-логическое устройство и устройство управления, как правило, объединены в единое устройство - центральный процессор. Кроме того, процесс выполнения программ может прерываться для выполнения неотложных действий, связанных с поступившими сигналами от внешних устройств компьютера - прерываний. Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах.

1.4 Программы для компьютеров

Компьютер - это универсальный прибор для переработки информации. Но сам по себе компьютер является просто ящиком с набором электронных схем. Он не обладает знаниями ни в одной области своего применения. Все эти знания сосредоточены в выполняемых на компьютере программах. Это аналогично тому, как для воспроизведения музыки недостаточно одного магнитофона, нужны еще и кассеты с записями.

Для того, чтобы компьютер мог осуществить определенные действия, необходимо составить для компьютера программу, то есть точную и подробную последовательность инструкций на понятном компьютеру языке, как надо обрабатывать информацию. Часто употребляемое выражение «компьютер сделал» (подсчитал, нарисовал) означает ровно то, что на компьютере была выполнена программа, которая позволила совершить соответствующее действие. Меняя программы для компьютера, можно превратить его в рабочее место бухгалтера или конструктора, статистика или агронома, редактировать на нем документы или играть в какую-нибудь игру. Поэтому для эффективного использования компьютера необходимо знать назначение и свойства необходимых при работе с ним программ.

Виды программ. Программы, работающие на компьютере, можно разделить на три категории:

· прикладные программы, непосредственно обеспечивающие выполнение необходимых пользователям работ: редактирование текстов, рисование картинок, обработку информационных массивов и т.д.;

· системные программы, выполняющие различные вспомогательные

· функции, например создание копий используемой информации, проверку работоспособности устройств компьютера и т.д. Особую роль среди

· всех системных программ играет операционная система - программа, управляющая компьютером, запускающая все другие программы и выполняющая для них различные сервисные функции;

· инструментальные системы (системы программирования), обеспечивающие создание новых программ для компьютера.

Большинство программ является коммерчески распространяемыми - они продаются в магазинах, по почте и другими способам. Имеются и бесплатно распространяемые программы, а также так называемые условно-бесплатные программы (по-английски - shareware), их можно получить для опробования бесплатно, но при систематическом использовании этих программ следует выслать определенную сумму разработчикам.

При первом чтении этот параграф можно пропустить.

1.5 История развития компьютеров

Аналитическая машина Бэббиджа. Еще в первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер (Бэббидж называл его Аналитической машиной). Именно Бэббидж впервые додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж хотел построить свой компьютер как механическое устройство, а программы собирался задавать посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках). Однако довести до конца эту работу Бэббидя не смог - она оказалась слишком сложной для техники того времени.

Первые компьютеры. В 40-ходах XX в. сразу несколько групп исследователей повторили попытку Бэббиджа на основе техники XX в. -электромеханических реле. Некоторые из этих исследователей ничего не знали о работах Бэббиджа и переоткрыли его идеи заново. Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электромеханических реле. Но из-за войны работы Цузе не были опубликованы. А в США в 1943 г. на одном из предприятий фирмы IBM американец Говард Эйкен создал более мощный компьютер под названием «Марк-1». Он уже позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и реально использовался для военных расчетов.

Однако электромеханические реле работают весьма медленно и недостаточно надежно. Поэтому, начиная с 1943 г. в США группа специалистов под руководством Джона Мочли и Преспера Экерта начала конструировать компьютер ENIAK на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее, чем Марк-1, Однако обнаружилось, что большую часть времени этот компьютер простаивал - ведь для задания метода расчетов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Компьютеры с хранимой в памяти программой. Чтобы упростить и убыстрить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу, а седей памяти. В 1945 г. к работе был привлечён знаменитый математик Джои фон Нейман, который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т.е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом. Мы расскажем о принципах фон Неймана в следующем параграфе.

Развитие элементной базы компьютеров. В 40-х и 50-х годах компьютеры создавались на основе электронных ламп. Поэтому компьютеры были очень большими (они занимали огромные залы), дорогими и ненадежными - ведь электронные лампы, как и обычные лампочки, часто перегорают. Но в 1948 г. были изобретены транзисторы - миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности. Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов был созданы и значительно более компактные внешние устройства для компьютеров, что позволило фирме Digital Equiment выпустить в 1965 г. первый мини-компьютер РDР-8 размером с холодильники стоимостью всего 20 тыс. дол. (компьютеры 40-х и 50-х годов обычно стоили миллионы дол).

После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс (будущий основатель фирмы Intе1) изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти. В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год, что и обеспечивает постоянное уменьшение стоимости компьютеров и повышение быстродействия.

Микропроцессоры. В 1970 г. был сделан еще один важный шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004 (см. рис. справа), который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intel - 4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда, возможности Intel-4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, -- он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле. Но рост производительности микропроцессоров не заставил себя ждать. В 1973 г. фирма Intel выпустила 8-битовый микропроцессор Intel-8080, которая до конца 70-х годов стала стандартом для микрокомпьютерной индустрии.

Появление персональных компьютеров. Вначале микропроцессоры использовались в различных специализированных устройствах, например, в калькуляторах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т.е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер продавался по цене около 500 дол. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало популярности персональных компьютеров.

Успех Альтаир-8800 заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например, программа для редактирования текстов WordStar и табличный процессор VisiCalc (соответственно 1978 и 1979 гг.). Эти (и многие другие) программы сделали покупку персональных компьютеров весьма выгодным для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т.д. Использование же больших компьютеров для этих целей было слишком дорого.

Появление IBM PC. В конце 70-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) - ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

Прежде всего, в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel - 8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кбайтами. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.

В августе 1981 г. новый компьютер под названием IBM PC (читается - Ай-Би-Эм Пи-Си) был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. Через один - два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров.

Открытая архитектура и появление клонов. Если бы IBM PC был сделан так же, как другие существовавшие во время его появления компьютеры, он бы устарел через два-три года, и мы давно бы уже о нем забыли. Действительно, кто сейчас помнит о самых замечательных моделях телевизоров, телефонов или даже автомобилей пятнадцатилетней давности!

Однако с компьютерами IBM PC получилось по-другому. Фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров:

1. Перспективность и популярность IBM PC сделала весьма привлекательным производство различных комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств.

2. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2-3 раза) аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры вначале стали презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PC-совместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM.

3. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей.

Все это привело к удешевлению IBM PC-совместимых компьютеров и стремительному улучшению их характеристик, а значит, к росту их популярности.

2. Как устроен компьютер

2.1 Основные блоки IВМ РС

Обычно персональные компьютеры IВМ РС состоят из трех частей (блоков):

· системного блока;

· клавиатуры, позволяющей вводить символы в компьютер;

· монитора (или дисплея) -- для изображения текстовой и графи

· ческой информации.

Компьютеры выпускаются и в портативном варианте -- обычно в «блокнотном» (ноутбук) исполнении.

Здесь системный блок, монитор и клавиатура заключены в один корпус: системный блок спрятан под клавиатурой, а монитор сделан как крышка к клавиатуре.

Системный блок. Хотя из этих частей компьютера системный блок выглядит наименее эффектно, именно он является в компьютере «главным». В нем располагаются все основные узлы компьютера:

· электронные схемы, управляющие работой компьютера

· (микропроцессор, оперативная память, контроллеры устройств и

· т.д., см. п. 2.4 и 2.5 ниже);

· блок питания, который преобразует электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные

· схемы компьютера;

· накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на гибкие магнитные диски (дискеты);

· накопитель на жестком магнитном диске, предназначенный для

· чтения и записи на несъемный жесткий магнитный диск (винчестер);

· другие устройства (см. ниже).

2.2 Дополнительные устройства

К системному блоку компьютера IBM PC можно подключать различные устройства ввода-вывода информации, расширяя тем самым его функциональные возможности.

Внешние устройства. Многие устройства располагаются вне системного блока компьютера и подсоединяются к нему через специальные гнезда (разъемы), находящиеся обычно на задней стенке системного блока. Такие устройства обычно называются внешними. Кроме монитора и клавиатуры, такими устройствами являются:

· принтер -- для вывода на печать текстовой и графической ин

· формации;

· мышь -- устройство, облегчающее ввод информации в компьютер

· джойстик -- манипулятор в виде укрепленной на шарнире ручки с кнопкой, употребляется в основном для компьютерных игр;

· а также другие устройства.

Внутренние устройства. Некоторые устройства могут вставляться внутрь системного блока компьютера (поэтому они часто называются внутренними), например:

· модем или факс-модем -- для обмена информацией с другими

· компьютерами через телефонную сеть (факс-модем может также

· получать и принимать факсы);

· дисковод для компакт-дисков, он обеспечивает возможность

· чтения данных с компьютерных компакт-дисков и проигрывания

· аудиокомпакт-дисков;

· стример -- для хранения данных на магнитной ленте;

· звуковая карта -- для воспроизведения и записи звуков

· (музыки, голоса и т.д.).

Впрочем, модемы, факс-модемы, стримеры, дисководы для компакт-дисков и другие устройства могут выпускаться и во внешнем исполнении. Как правило, устройства во внутреннем исполнении стоят дешевле -- для них не надо изготавливать корпус и их не надо снабжать своим блоком питания.

Контроллеры и устройства. Для управления работой устройств в IBM PC-совместимых компьютерах используются электронные схемы -- контроллеры. Различные устройства используют разные способы подключения к контроллерам:

· некоторые устройства (дисковод для дискет, клавиатура и т.д.)

· подключаются к имеющимся в составе компьютера стандартным

· контроллерам;

· некоторые устройства (звуковые карты, многие факс-модемы и

· т.д.) выполнены как электронные платы, то есть смонтированы на одной плате со своим контроллером;

· остальные устройства используют следующий способ подключения: в системный блок компьютера вставляется электронная

· плата (контроллер), управляющая работой устройства, а само

· устройство подсоединяется к этой плате кабелем.

2.3 Микропроцессор и сопроцессор

Микропроцессор. Самым главным элементом в компьютере, его «мозгом», является микропроцессор -- небольшая (в несколько сантиметров) электронная схема, выполняющая все вычисления и обработку информации. Микропроцессор умеет выполнять сотни различных операций и делает это со скоростью в несколько десятков или даже сотен миллионов операций в секунду. В компьютерах типа IBM PC используются микропроцессоры фирмы Intel, а также совместимые с ними микропроцессоры других фирм (AMD, Cyrix, IBM и др.). Микропроцессоры фирмы Intel, применяемые в IBM PC-совместимых компьютерах, таковы: Intel-8088, 80286, 80386 (модификации SX и DX), 80486 (модификации SX, SX2, DX, DX2 и DX4), Pentium и Pentium Pro, они приведены в порядке возрастания производительности и цены. Разница в производительности этих микропроцессоров очень велика. Так, новейший микропроцессор Pentium Pro быстрее микропроцессора Intel-- 8088 (на котором были основаны исходный вариант компьютера IBM PC и модель IBM PC XT) в несколько тысяч раз!

Тактовая частота. Одинаковые модели микропроцессоров могут иметь разную тактовую частоту -- чем выше тактовая частота, тем выше производительность и цена микропроцессора. Тактовая частота измеряется в мегагерцах (МГц). Например, микропроцессоры Pentium выпускаются с тактовой частотой от 75 до 200 МГц (то есть они отличаются по производительности примерно в два с половиной раза). Часто тактовая частота указывается вслед за моделью микропроцессора, например Pentium/75 МГц.

Сопроцессор. В тех случаях, когда на компьютере приходится выполнять много математических вычислений (например, в инженерных расчетах, обработке трехмерных изображений и т.д.), желательно, чтобы математические операции над вещественными числами поддерживались аппаратно, то есть самим- микропроцессором. Но микропроцессоры Intel-8088, 80286, 80386 и 80486SX не обеспечивают такую поддержку, поэтому к ним для этого требуется добавить математический сопроцессор (Intel-8087, 80287, 80387 и 80487SX соответственно), который помогает основному микропроцессору выполнять математические операции над вещественными числами. Новейшие микропроцессоры фирмы Intel (80486DX, Pentium и Pentium Pro) и почти все их аналоги других фирм сами умеют выполнять операции над вещественными числами, поэтому для них сопроцессоры не требуются.

2.4 Память

В этом параграфе мы расскажем о различных видах памяти, применяющихся в IBM PC-совместимых компьютерах.

Оперативная память. Очень важным элементом компьютера является оперативная память. Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен. При выключении компьютера содержимое оперативной памяти стирается (за некоторыми исключениями, о которых говорится ниже). Часто для оперативной памяти используют обозначение RAM (random access memory, то есть память с произвольным доступом).

Количество памяти и возможности компьютера. От количества установленной в компьютере оперативной памяти напрямую зависит, с какими программами Вы сможете на нем работать. При недостаточном количестве оперативной памяти многие программы либо вовсе не будут работать, либо станут работать крайне медленно. Можно привести следующую приблизительную классификацию возможностей компьютера в зависимости от объема оперативной памяти:

1 Мбайт и менее - на компьютере возможна работа только в среде DOS. Такие компьютеры можно использовать для корректировки текстов или ввода данных;

4 Мбайта - на компьютере возможна работа в среде DOS, Windows 3.1 и Windows for Workgroups. Работа в DOS вполне комфортна, а в Windows -- нет: некоторые Windows-программы при таком объеме памяти не работают (скажем, Corel Draw 5), а некоторые позволяют обрабатывать лишь небольшие и несложные документы. Одновременный запуск нескольких Windows-программ также может быть затруднен;

8 Мбайт - обеспечивается комфортная работа в среде Windows 3.1, Windows for Workgroups, при этом дальнейшее увеличение объема оперативной памяти уже практически не повышает быстродействие для большинства офисных приложений. Использование более новых операционных систем, как Windows 95 и OS/2 Warp, в принципе возможно, но работать они будут явно медленно;

16 Мбайт - обеспечивается комфортная работа в операционных системах Windows 95 и OS/2, причем дальнейшее увеличение объема оперативной памяти уже практически не повышает быстродействие при выполнении большинства офисных приложений. Возможно использование Windows NT, хотя ей не помешает добавить еще 8-16 Мбайт;

32 Мбайта и более - такой объем оперативной памяти может требоваться для серверов локальных сетей, компьютеров, используемых для обработки фотоизображений или видеофильмов, и в некоторых других приложениях. Полезен он может быть и для компьютеров, работающих под управлением ОС Windows NT.

Стоимость оперативной памяти в последнее время резко упала (с лета 1995 до лета 1996 г. -- более чем в четыре раза), поэтому большие запросы многих программ и операционных систем к оперативной памяти стали с финансовой точки зрения гораздо менее обременительными.

Кэш-память. Для ускорения доступа к оперативной памяти на быстродействующих компьютерах используется специальная сверхбыстродействующая кэш-память, которая располагается как бы «между» микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.

Другие виды памяти. Расскажем также о других видах памяти, содержащихся в компьютере. При первом чтении окончание этого параграфа можно пропустить.

BIOS (постоянная память). В IBM PC-совместимом компьютере имеется также и постоянная память, в которую данные занесены при ее изготовлении. Как правило, эти данные не могут быть изменены, выполняемые на компьютере программы могут только их считывать. Такой вид памяти обычно называется ROM (read only memory, или память только для чтения), или ПЗУ (постоянное запоминающее устройство).

В IBM PC-совместимом компьютере в постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки операционной системы (ОС) и выполнения базовых функций по обслуживанию устройств компьютера. Поскольку большая часть этих программ связана с обслуживанием ввода-вывода, часто содержимое постоянной памяти называется BIOS (Basic Input-Output System, или базовая система ввода-вывода).

В BIOS содержится также программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дис кет, часто также режимы работы с оперативной памятью, запрос пароля при начальной загрузке и т.д.). Как правило, программа настройки конфигурации вызывается, если пользователь во время начальной загрузки нажмет определенную клавишу или комбинацию клавиш (чаще всего клавишу [Del)).

CMOS (полупостоянная память). Кроме обычной оперативной памяти и постоянной памяти, в компьютере имеется также небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS-памятью, поскольку эта память обычно выполняется по технологии CMOS (complementary metal-oxide semiconductor), обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера - SETUP (см. выше).

Видеопамять. Еще один вид памяти в IBM PC-совместимых компьютерах - это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера - электронной схемы, управляющей выводом изображения на экран. Мы расскажем о видеоконтроллерах и видеопамяти в следующей главе.

2.5 Электронные платы, контроллеры и шины

Электронные платы. Электронная начинка IBM PC, как правило, выполняется из нескольких модулей -- электронных плат. Каждая плата представляет собой плоский кусок пластика, на котором укреплены электронные компоненты (микросхемы, конденсаторы и т.д.) и различные разъемы. Внутри электронной платы проложены проводники для соединения смонтированных на плате компонент между собой.

Материнская плата. Самой большой электронной платой в компьютере является системная, или материнская, плата (см. рис). На ней обычно располагаются основной микропроцессор, оперативная память, кэш-память, шина (или шины) и BIOS. Кроме того, там находятся электронные схемы (контроллеры), управляющие некоторыми устройствами компьютера. Так, контроллер клавиатуры всегда находится на материнской плате. Часто там же находятся и контроллеры для других устройств (жестких дисков, дисководов для дискет и т.д.).

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ