Рефераты
 

Информационные технологии в профессиональной деятельности

.3 Мультимедиа. Так называют способ использования ПЭВМ с применением всех доступных средств: текста, стереозвука, голосового сопровождения, высококачественной графики, видеоклипов, мультипликации, а в ближайшее время, возможно, и виртуальной реальности. Иначе говоря, мультимедиа - средство объединения цифровой и текстовой информации ЭВМ со звуковыми сигналами и видеосигналами, которые могут как воспроизводиться, так и обрабатываться под управлением ПЭВМ.

Мультимедийный компьютер включает в себя звуковую стереоплату; плату видеоввода для работы, с видеомагнитофоном, видеокамерой, цифровой фотокамерой, телевизором; дисковод для работы с CD-ROM; звуковые стереоколонки; микрофон; требуемое программное обеспечение.

Ряд фирм выпускает комплекты мультимедиа (Multimedia Kit), включающие все необходимое.

Обычно применение мультимедиа связывают лишь с компьютерными играми, но это неверно. Мультимедиа может использоваться в самых различных сферах деятельности. Успех мультимедиа в настоящее время оказался настолько взрывным, что трудно назвать область, где бы сейчас не звучало это слово.

Основные области применения:

1. Бизнес-приложения. Здесь мультимедиа могут служить:

а) для организации презентаций, т.е. рекламного представления какого-либо вида товара, услуги или фирмы, что требует вывода изображений (фотографий, слайдов), пояснений к ним, текстовых и звуковых; вывода диаграмм для сравнительной оценки параметров объектов; и пр.;

б) для организации телеконференций "вживую", т.е. выводом на экран монитора изображения участников конференции;

в) для ввода в ПЭВМ команд и даже текста с помощью голоса.

Теперь вместо того, чтобы печатать письма, документы и т.д. на клавиатуре, вы сможете ввести необходимую вам информацию при помощи голоса непосредственно в текстовый редактор.

2. Профессиональная деятельность, в частности:

а) производство видеофильмов;

б) работа с компьютерной графикой, в том числе архитектурный дизайн, спецэффекты в играх, трехмерное моделирование (моделирование объектов в трехмерном пространстве, с этим, связано и понятие "виртуальная реальность"), и пр.;

в) создание домашних музыкальных студий. При наличии специальных программ, подключив синтезатор к ПЭВМ и наиграв мелодию, можно потом ее обработать - изменить высоту тона, длительность звучания, тип инструмента и т.д.

3. Учебный процесс. Создание музыкальных редакторов, различных обучающих, развивающих программ, всевозможных энциклопедий и справочников, озвученных, содержащих красочные иллюстрации, фрагменты кино - и мультфильмов, и пр.

2. Лекция

Тема 2.1 Защита информации

Изменения, происходящие в экономической жизни России - создание финансово-кредитной системы, предприятий различных форм собственности и т.п. - оказывают существенное влияние на вопросы защиты информации. Долгое время в нашей стране существовала только одна собственность - государственная, поэтому информация и секреты были тоже только государственные, которые охранялись мощными спецслужбами.

Объектами посягательств могут быть сами технические средства (компьютеры и периферия) как материальные объекты, программное обеспечение и базы данных, для которых технические средства являются окружением.

В этом смысле компьютер может выступать и как предмет посягательств, и как инструмент. Если разделять два последних понятия, то термин компьютерное преступление как юридическая категория не имеет особого смысла. Если компьютер - только объект посягательства, то квалификация правонарушения может быть произведена по существующим нормам права. Если же - только инструмент, то достаточен только такой признак, как “применение технических средств”. Возможно объединение указанных понятий, когда компьютер одновременно и инструмент и предмет. В частности, к этой ситуации относится факт хищения машинной информации. Если хищение информации связано с потерей материальных и финансовых ценностей, то этот факт можно квалифицировать как преступление. Также если с данным фактом связываются нарушения интересов национальной безопасности, авторства, то уголовная ответственность прямо предусмотрена в соответствии с законами РФ.

Каждый сбой работы компьютерной сети это не только “моральный” ущерб для работников предприятия и сетевых администраторов. По мере развития технологий платежей электронных, “безбумажного” документооборота и других, серьезный сбой локальных сетей может просто парализовать работу целых корпораций и банков, что приводит к ощутимым материальным потерям. Не случайно, что защита данных в компьютерных сетях становится одной из самых острых проблем в современной информатике. На сегодняшний день сформулировано три базовых принципа информационной безопасности, которая должна обеспечивать: целостность данных - защиту от сбоев, ведущих к потере информации, а также неавторизованного создания или уничтожения данных. Конфиденциальность информации и, одновременно, ее доступность для всех авторизованных пользователей.

Следует также отметить, что отдельные сферы деятельности (банковские и финансовые институты, информационные сети, системы государственного управления, оборонные и специальные структуры) требуют специальных мер безопасности данных и предъявляют повышенные требования к надежности функционирования информационных систем, в соответствии с характером и важностью решаемых ими задач.

Компьютерная преступность.

Ни в одном из уголовных кодексов союзных республик не удастся найти главу под названием “Компьютерные преступления”. Таким образом компьютерных преступлений, как преступлений специфических в юридическом смысле не существует.

Попытаемся кратко обрисовать явление, которое как социологическая категория получила название “компьютерная преступность”. Компьютерные преступления условно можно подразделить на две большие категории - преступления, связанные с вмешательством в работу компьютеров, и, преступления, использующие компьютеры как необходимые технические средства.

Перечислим основные виды преступлений, связанных с вмешательством в работу компьютеров.

1. Несанкционированный доступ к информации, хранящейся в компьютере. Несанкционированный доступ осуществляется, как правило, с использованием чужого имени, изменением физических адресов технических устройств, использованием информации оставшейся после решения задач, модификацией программного и информационного обеспечения, хищением носителя информации, установкой аппаратуры записи, подключаемой к каналам передачи данных.

Хакеры “электронные корсары”, “компьютерные пираты” - так называют людей, осуществляющих несанкционированный доступ в чужие информационные сети для забавы. Набирая на удачу один номер за другим, они терпеливо дожидаются, пока на другом конце провода не отзовется чужой компьютер. После этого телефон подключается к приемнику сигналов в собственной ЭВМ, и связь установлена. Если теперь угадать код (а слова, которые служат паролем часто банальны), то можно внедриться в чужую компьютерную систему.

Несанкционированный доступ к файлам законного пользователя осуществляется также нахождением слабых мест в защите системы. Однажды обнаружив их, нарушитель может не спеша исследовать содержащуюся в системе информацию, копировать ее, возвращаться к ней много раз, как покупатель рассматривает товары на витрине.

2. Ввод в программное обеспечение “логических бомб”, которые срабатывают при выполнении определенных условий и частично или полностью выводят из строя компьютерную систему.

“Временная бомба” - разновидность “логической бомбы”, которая срабатывает по достижении определенного момента времени.

Способ “троянский конь” состоит в тайном введении в чужую программу таких команд, позволяют осуществлять новые, не планировавшиеся владельцем программы функции, но одновременно сохранять и прежнюю работоспособность.

С помощью “троянского коня” преступники, например, отчисляют на свой счет определенную сумму с каждой операции.

В США получила распространение форма компьютерного вандализма, при которой “троянский конь” разрушает через какой-то промежуток времени все программы, хранящиеся в памяти машины. Во многих поступивших в продажу компьютерах оказалась “временная бомба”, которая “взрывается” в самый неожиданный момент, разрушая всю библиотеку данных. Не следует думать, что “логические бомбы” - это экзотика, несвойственная нашему обществу.

3. Разработка и распространение компьютерных вирусов.

“Троянские кони” типа “сотри все данные этой программы, перейди в следующую и сделай тоже самое” обладают свойствами переходить через коммуникационные сети из одной системы в другую, распространяясь как вирусное заболевание.

Выявляется вирус не сразу: первое время компьютер “вынашивает инфекцию”, поскольку для маскировки вирус не нередко используется в комбинации с “логической бомбой” или “временной бомбой”. Вирус наблюдает за всей обрабатываемой информацией и может перемещаться, используя пересылку этой информации. Все происходит, как если бы он заразил белое кровяное тельце и путешествовал с ним по организму человека.

Начиная действовать (перехватывать управление), вирус дает команду компьютеру, чтобы тот записал зараженную версию программы. После этого он возвращает программе управление. Пользователь ничего не заметит, так как его компьютер находится в состоянии “здорового носителя вируса”. Обнаружить этот вирус можно, только обладая чрезвычайно развитой программистской интуицией, поскольку никакие нарушения в работе ЭВМ в данный момент не проявляют себя. А в один прекрасный день компьютер “заболевает”.

4. Преступная небрежность в разработке, изготовлении и эксплуатации программно-вычислительных комплексов, приведшая к тяжким последствиям.

Проблема неосторожности в области компьютерной техники сродни неосторожной вине при использовании любого другого вида техники, транспорта и т.п.

Особенностью компьютерной неосторожности является то, что безошибочных программ в принципе не бывает. Если проект практически в любой области техники можно выполнить с огромным запасом надежности, то в области программирования такая надежность весьма условна, а в ряде случаев почти не достижима.

5. Подделка компьютерной информации.

По-видимому, этот вид компьютерной преступности является одним из наиболее свежих. Он является разновидностью несанкционированного доступа с той разницей, что пользоваться им может, как правило, не посторонний пользователь, а сам разработчик, причем имеющий достаточно высокую квалификацию. Идея преступления состоит в подделке выходной информации компьютеров с целью имитации работоспособности больших систем, составной частью которых является компьютер. При достаточно ловко выполненной подделке зачастую удается сдать заказчику заведомо неисправную продукцию.

К подделке информации можно отнести также подтасовку результатов выборов, голосований, референдумов и т.п. Ведь если каждый голосующий не может убедиться, что его голос зарегистрирован правильно, то всегда возможно внесение искажений в итоговые протоколы.

Естественно, что подделка информации может преследовать и другие цели.

6. Хищение компьютерной информации.

Если “обычные” хищения подпадают под действие существующего уголовного закона, то проблема хищения информации значительно более сложна. Присвоение машинной информации, в том числе программного обеспечения, путем несанкционированного копирования не квалифицируется как хищение, поскольку хищение сопряжено с изъятием ценностей из фондов организации. При неправомерном обращении в собственность машинная информация может не изыматься из фондов, а копироваться. Следовательно, как уже отмечалось выше, машинная информация должна быть выделена как самостоятельный предмет уголовно-правовой охраны.

Собственность на информацию, как и прежде, не закреплена в законодательном порядке. На мой взгляд, последствия этого не замедлят сказаться.

Предупреждение компьютерных преступлений.

При разработке компьютерных систем, выход из строя или ошибки в работе которых могут привести к тяжелым последствиям, вопросы компьютерной безопасности становятся первоочередными. Известно много мер, направленных на предупреждение преступления. Выделим из них технические, организационные и правовые.

К техническим мерам можно отнести защиту от несанкционированного доступа к системе, резервирование особо важных компьютерных подсистем, организацию вычислительных сетей с возможностью перераспределения ресурсов в случае нарушения работоспособности отдельных звеньев, установку оборудования обнаружения и тушения пожара, оборудования обнаружения воды, принятие конструкционных мер защиты от хищений, саботажа, диверсий, взрывов, установку резервных систем электропитания, оснащение помещений замками, уста новку сигнализации и многое другое.

К организационным мерам отнесем охрану вычислительного центра, тщательный подбор персонала, исключение случаев ведения особо важных работ только одним человеком, наличие плана восстановления работоспособности центра после выхода его из строя, организацию обслуживания вычислительного центра посторонней организацией или лицами, незаинтересованными в сокрытии фактов нарушения работы центра, универсальность средств защиты от всех пользователей (включая высшее руководство), возложение ответственности на лиц, которые должны обеспечить безопасность центра, выбор места расположения центра и т.п.

К правовым мерам следует отнести разработку норм, устанавливающих ответственность за компьютерные преступления, защиту авторских прав программистов, совершенствование уголовного и гражданского законодательства, а также судопроизводства. К правовым мерам относятся также вопросы общественного контроля за разработчиками компьютерных систем и принятие международных договоров об их ограничениях, если они влияют или могут повлиять на военные, экономические и социальные аспекты жизни стран, заключающих соглашение

Защита данных.

Шифрование данных может осуществляться в режимах On-line (в темпе поступления информации) и Off-line (автономном). Остановимся подробнее на первом типе, представляющем большой интерес. Наиболее распространены два алгоритма.

Стандарт шифрования данных DES (Data Encryption Standart) был разработан фирмой IBM в начале 70-х годов и в настоящее время является правительственным стандартом для шифрования цифровой информации. Он рекомендован Ассоциацией Американских Банкиров. Сложный алгоритм DES использует ключ длиной 56 бит и 8 битов проверки на четность и тре бует от злоумышленника перебора 72 квадрилионов возможных ключевых комбинаций, обеспечивая высокую степень защиты при небольших расходах. При частой смене ключей алгоритм удовлетворительно решает проблему превращения конфиденциальной информации в недоступную.

Защита от компьютерных вирусов. В качестве перспективного подхода к защите от компьютерных вирусов в последние годы все чаще применяется сочетание программных и аппаратных методов защиты. Среди аппаратных устройств такого плана можно отметить специальные антивирусные платы, которые вставляются в стандартные слоты расширения компьютера. Корпорация Intel в 1994 году предложила перспективную технологию защиты от вирусов в компьютерных сетях. Flash-память сетевых адаптеров Intel EtherExpress PRO/10 содержит антивирусную программу, сканирующую все системы компьютера еще до его загрузки.

Защита от несанкционированного доступа. Помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.

В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем. Так, крупнейший производитель сетевых ОС - корпорация Novell - в своем последнем продукте NetWare 4.1 предусмотрел помимо стандартных средств ограничения доступа, таких, как система паролей и разграничения полномочий, ряд новых возможностей, обеспечивающих первый класс защиты данных. Новая версия NetWare предусматривает, в частности, возможность кодирования данных по принципу “открытого ключа” (алгоритм RSA) с формированием электронной подписи для передаваемых по сети пакетов.

В то же время в такой системе организации защиты все равно остается слабое место: уровень доступа и возможность входа в систему определяются паролем. Не секрет, что пароль можно подсмотреть или подобрать. Для исключения возможности неавторизованного входа в компьютерную сеть в последнее время используется комбинированный подход - пароль + идентификация пользователя по персональному “ключу”. В качестве “ключа” может использоваться пластиковая карта (магнитная или со встроенной микросхемой - smart-card) или различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза или отпечатков пальцев, размерам кисти руки и так далее.

Защита информации при удаленном доступе. По мере расширения деятельности предприятий, роста численности персонала и появления новых филиалов, возникает необходимость доступа удаленных пользователей (или групп пользователей) к вычислительным и информационным ресурсам главного офиса компании. Разработаны специальные устройства контроля доступа к компьютерным сетям по коммутируемым линиям. Например, фирмой AT&T предлагается модуль Remote Port Security Device (PRSD), представляющий собой два блока размером с обычный модем: RPSD Lock (замок), устанавливаемый в центральном офисе, и RPSD Key (ключ), подключаемый к модему удаленного пользователя. RPSD Key и Lock позволяют установить несколько уровней защиты и контроля доступа.

Широкое распространение радиосетей в последние годы поставило разработчиков радиосистем перед необходимостью защиты информации от “хакеров”, вооруженных разнообразными сканирующими устройствами. Были применены разнообразные технические решения. Например, в радиосети компании RAM Mobil Data информационные пакеты передаются через разные каналы и базовые станции, что делает практически невозможным для посторонних собрать всю передаваемую информацию воедино. Активно используются в радио сетях и технологии шифрования данных при помощи алгоритмов DES и RSA.

Итак хотелось бы подчеркнуть, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в компьютерных сетях.

В то же время свести риск потерь к минимуму возможно лишь при комплексном подходе к вопросам безопасности.

Тема 2.2 Вирусы и защита от них

Компьютерный вирус - это специально написанная небольшая по размерам программа, которая может "приписывать" себя к другим программам, а также выполнять различные нежелательные действия на компьютере. Программа, внутри которой находится вирус, называется "зараженной". Когда такая программа начинает работу, то сначала управление получает вирус. Вирус находит и "заражает" другие программы, а также выполняет какие-нибудь вредные действия (например, портит файлы или таблицу размещения файлов на диске, "засоряет" оперативную память и т.д.). Вирус - это программа, обладающая способностью к самовоспроизведению. Такая способность является единственным свойством, присущим всем типам вирусов.

История компьютерной вирусологии представляется сегодня постоянной "гонкой за лидером", причем, не смотря на всю мощь современных антивирусных программ, лидерами являются именно вирусы. Среди тысяч вирусов лишь несколько десятков являются оригинальными разработками, использующими действительно принципиально новые идеи. Все остальные - "вариации на тему". Но каждая оригинальная разработка заставляет создателей антивирусов приспосабливаться к новым условиям, догонять вирусную технологию. Последнее можно оспорить. Например, в 1989 году американский студент сумел создать вирус, который вывел из строя около 6000 компьютеров Министерства обороны США. Или эпидемия известного вируса Dir-II, разразившаяся в 1991 году. Вирус использовал действительно оригинальную, принципиально новую технологию и на первых порах сумел широко распространиться за счет несовершенства традиционных антивирусных средств.

Или всплеск компьютерных вирусов в Великобритании: Кристоферу Пайну удалось создать вирусы Pathogen и Queeq, а также вирус Smeg. Именно последний был самым опасным, его можно было накладывать на первые два вируса, и из-за этого после каждого прогона программы они меняли конфигурацию. Поэтому их было невозможно уничтожить. Чтобы распространить вирусы, Пайн скопировал компьютерные игры и программы, заразил их, а затем отправил обратно в сеть. Пользователи загружали в свои компьютеры зараженные программы и инфицировали диски. Ситуация усугубилась тем, что Пайн умудрился занести вирусы и в программу, которая с ними борется. Запустив ее, пользователи вместо уничтожения вирусов получали еще один. В результате этого были уничтожены файлы множества фирм, убытки составили миллионы фунтов стерлингов.

Причины появления и распространения компьютерных вирусов, с одной стороны, скрываются в психологии человеческой личности и ее теневых сторонах (зависти, мести, тщеславии непризнанных творцов, невозможности конструктивно применить свои способности), с другой стороны, обусловлены отсутствием аппаратных средств защиты и противодействия со стороны операционной системы персонального компьютера.

Классификация вирусов.

В зависимости от среды обитания вирусы можно разделить на:

Сетевые вирусы распространяются по различным компьютерным сетям.

Файловые вирусы внедряются главным образом в исполняемые модули, т.е. в файлы, имеющие расширения COM и EXE. Файловые вирусы могут внедряться и в другие типы файлов, но, как правило, записанные в таких файлах, они никогда не получают управление и, следовательно, теряют способность к размножению.

Загрузочные вирусы внедряются в загрузочный сектор диска (Boot-сектор) или в сектор, содержащий программу загрузки системного диска (Master Boot Re-cord).

Файлово-загрузочные вирусы заражают как файлы, так и загрузочные сектора дисков.

По способу заражения вирусы делятся на:

Резидентный вирус при заражении (инфицировании) компьютера оставляет в оперативной памяти свою резидентную часть, которая потом перехватывает обращение операционной системы к объектам заражения (файлам, загрузочным секторам дисков и т.п.) и внедряется в них. Резидентные вирусы находятся в памяти и являются активными вплоть до выключения или перезагрузки компьютера.

Нерезидентные вирусы не заражают память компьютера и являются активными ограниченное время.

По особенностям алгоритма:

Загрузочные вирусы

Рассмотрим схему функционирования очень простого загрузочного вируса, заражающего дискеты.

Что происходит, когда вы включаете компьютер? Первым делом управление передается программе начальной загрузки, которая хранится в постоянно запоминающем устройстве (ПЗУ) т.е. ПНЗ ПЗУ.

Эта программа тестирует оборудование и при успешном завершении проверок пытается найти дискету в дисководе А:

Таким образом, нормальная схема начальной загрузки следующая:

ПНЗ (ПЗУ) - ПНЗ (диск) - СИСТЕМА

Теперь рассмотрим вирус. В загрузочных вирусах выделяют две части: голову и т. н. хвост. Хвост может быть пустым.

Пусть у вас имеются чистая дискета и зараженный компьютер, под которым мы понимаем компьютер с активным резидентным вирусом. Как только этот вирус обнаружит, что в дисководе появилась подходящая жертва - в нашем случае не защищенная от записи и еще не зараженная дискета, он приступает к заражению. Заражая дискету, вирус производит следующие действия:

выделяет некоторую область диска и помечает ее как недоступную операционной системе, это можно сделать по-разному, в простейшем и традиционном случае занятые вирусом секторы помечаются как сбойные (bad)

копирует в выделенную область диска свой хвост и оригинальный (здоровый) загрузочный сектор

замещает программу начальной загрузки в загрузочном секторе (настоящем) своей головой

организует цепочку передачи управления согласно схеме.

Таким образом, голова вируса теперь первой получает управление, вирус устанавливается в память и передает управление оригинальному загрузочному сектору. В цепочке

ПНЗ (ПЗУ) - ПНЗ (диск) - СИСТЕМА

появляется новое звено:

ПНЗ (ПЗУ) - ВИРУС - ПНЗ (диск) - СИСТЕМА

Мы рассмотрели схему функционирования простого бутового вируса, живущего в загрузочных секторах дискет. Как правило, вирусы способны заражать не только загрузочные секторы дискет, но и загрузочные секторы винчестеров.

Файловые вирусы.

В отличие от загрузочных вирусов, которые практически всегда резидентны, файловые вирусы совсем не обязательно резидентны. Рассмотрим схему функционирования нерезидентного файлового вируса. Пусть у нас имеется инфицированный исполняемый файл. При запуске такого файла вирус получает управление, производит некоторые действия и передает управление "хозяину"

Какие же действия выполняет вирус? Он ищет новый объект для заражения - подходящий по типу файл, который еще не заражен. Заражая файл, вирус внедряется в его код, чтобы получить управление при запуске этого файла. Кроме своей основной функции - размножения, вирус вполне может сделать что-нибудь замысловатое (сказать, спросить, сыграть) - это уже зависит от фантазии автора вируса. Если файловый вирус резидентный, то он установится в память и получит возможность заражать файлы и проявлять прочие способности не только во время работы зараженного файла. Заражая исполняемый файл, вирус всегда изменяет его код - следовательно, заражение исполняемого файла всегда можно обнаружить.

Полиморфные вирусы.

Полиморфные вирусы - вирусы, модифицирующие свой код в зараженных программах таким образом, что два экземпляра одного и того же вируса могут не совпадать ни в одном бите.

Такие вирусы не только шифруют свой код, используя различные пути шифрования, но и содержат код генерации шифровщика и расшифровщика, что отличает их от обычных шифровальных вирусов, которые также могут шифровать участки своего кода, но имеют при этом постоянный код шифровальщика и расшифровщика.

Полиморфные вирусы - это вирусы с самомодифицирующимися расшифровщиками. Цель такого шифрования: имея зараженный и оригинальный файлы, вы все равно не сможете проанализировать его код с помощью обычного дизассемблирования. Этот код зашифрован и представляет собой бессмысленный набор команд. Расшифровка производится самим вирусом уже непосредственно во время выполнения. При этом возможны варианты: он может расшифровать себя всего сразу, а может выполнить такую расшифровку "по ходу дела", может вновь шифровать уже отработавшие участки. Все это делается ради затруднения анализа кода вируса.

Стелс-вирусы.

В ходе проверки компьютера антивирусные программы считывают данные - файлы и системные области с жестких дисков и дискет, пользуясь средствами операционной системы и базовой системы ввода/вывода BIOS. Ряд вирусов, после запуска оставляют в оперативной памяти компьютера специальные модули, перехватывающие обращение программ к дисковой подсистеме компьютера. Если такой модуль обнаруживает, что программа пытается прочитать зараженный файл или системную область диска, он на ходу подменяет читаемые данные, как будто вируса на диске нет.

Стелс-вирусы обманывают антивирусные программы и в результате остаются незамеченными. Тем не менее, существует простой способ отключить механизм маскировки стелс-вирусов. Достаточно загрузить компьютер с не зараженной системной дискеты и сразу, не запуская других программ с диска компьютера (которые также могут оказаться зараженными), проверить компьютер антивирусной программой.

При загрузке с системной дискеты вирус не может получить управление и установить в оперативной памяти резидентный модуль, реализующий стелс-механизм. Антивирусная программа сможет прочитать информацию, действительно записанную на диске, и легко обнаружит вирус.

Методы защиты от компьютерных вирусов.

Каким бы не был вирус, пользователю необходимо знать основные методы защиты от компьютерных вирусов.

Для защиты от вирусов можно использовать:

общие средства защиты информации (копирование важной информации и разграничение доступа);

профилактические меры, позволяющие уменьшить вероятность заражения вирусом;

специализированные программы для защиты от вирусов.

Несмотря на то, что общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов:

ПРОГРАММЫ-ДЕТЕКТОРЫ позволяют обнаруживать файлы, зараженные одним из нескольких известных вирусов. Эти программы проверяют, имеется ли в файлах на указанном пользователем диске специфическая для данного вируса комбинация байтов. При ее обнаружении в каком-либо файле на экран выводится соответствующее сообщение (Scan, Aidstest).

Многие детекторы имеют режимы лечения или уничтожения зараженных файлов. Следует подчеркнуть, что программы-детекторы могут обнаруживать только те вирусы, которые ей "известны".

Многие программы-детекторы (в том числе и Aidstest) не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Дело в том, что для чтения диска они используют функции DOS, а они перехватываются вирусом, который говорит, что все хорошо.

Так что надежный диагноз программы-детекторы дают только при загрузке DOS с "чистой", защищенной от записи дискеты, при этом копия программы-детектора также должна быть запущена с этой дискеты.

Большинство программ-детекторов имеют функцию "доктора", т.е. они пытаются вернуть зараженные файлы или области диска в их исходное состояние. Те файлы, которые не удалось восстановить, как правило, делаются неработоспособными или удаляются.

Большинство программ-докторов умеют "лечить" только от некоторого фиксированного набора вирусов, поэтому они быстро устаревают.

ПРОГРАММЫ-РЕВИЗОРЫ имеют две стадии работы. Сначала они запоминают сведения о состоянии программ и системных областей дисков (загрузочного сектора и сектора с таблицей разбиения жесткого диска). Предполагается, что в этот момент программы и системные области дисков не заражены. После этого с помощью программы-ревизора можно в любой момент сравнить состояние программ и системных областей дисков с исходным. О выявленных несоответствиях сообщается пользователю.

Чтобы проверка состояния программ и дисков проходила при каждой загрузке операционной системы, необходимо включить команду запуска программы-ревизора в командный файл AUTOEXEC. BAT. Это позволяет обнаружить заражение компьютерным вирусом, когда он еще не успел нанести большого вреда. Более того, та же программа-ревизор сможет найти поврежденные вирусом файлы.

ПРОГРАММЫ-ФИЛЬТРЫ, которые располагаются резидентно в оперативной памяти компьютера и перехватывают те обращения к операционной системе, которые используются вирусами для размножения и нанесения вреда, и сообщают о них пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции.

Некоторые программы-фильтры не "ловят" подозрительные действия, а проверяют вызываемые на выполнение программы на наличие вирусов. Это вызывает замедление работы компьютера.

Однако преимущества использования программ-фильтров весьма значительны - они позволяют обнаружить многие вирусы на самой ранней стадии, когда вирус еще не успел размножиться и что-либо испортить. Тем самым можно свести убытки от вируса к минимуму.

ПРОГРАММЫ-ВАКЦИНЫ, или ИММУНИЗАТОРЫ, модифицируют программы и диски таким образом, что это не отражается на работе программ, но тот вирус, от которого производится вакцинация, считает эти программы или диски уже зараженными. Эти программы крайне неэффективны.

3. Лекция

Тема 3.1 Internet и его службы

Компьютерной сетью (сетью ЭВМ) обычно называют совокупность взаимосвязанных и распределенных по некоторой территории ЭВМ и коммутационных устройств. В настоящее время интерес к сетям во всем мире очень велик. Началось стремительное развитие сетей и в России. Это определяется следующими особенностями сетевых технологий:

1 Многие организации, фирмы отличаются большой территориальной рассредоточенностью своих подразделений. Если ЭВМ этих подразделений включены в единую сеть, то у них появляется возможность общения и связи независимо от расстояния между ними.

2 Объединение ЭВМ предприятия в единую сеть позволяет осуществить общий доступ к базам данных или оборудованию.

Использование сетей ЭВМ позволяет создать достаточно гибкую рабочую среду. Так, сотрудники фирмы, используя персональные ЭВМ, подключенные к сети ЭВМ своего учреждения при помощи процедуры "удаленного доступа, могут работать дома или находясь в командировке в другом городе.

На рисунке приведен фрагмент сети, состоящий из двух ЭВМ - А и Б. Собственно, сеть в полной мере появляется лишь тогда, когда имеется два и более альтернативных пути передачи информации. Каждая из ЭВМ выполняет некоторое Приложение Конечного Пользователя (ПКП).

В качестве ПКП могут выступать программа, пакет программ или файл данных.

Функция сети - связать ЭВМ А и Б так, чтобы обеспечить доступ программы ЭВМ А к файлу ЭВМ Б (или наоборот). Обеспечить доступ в данном случае - это предоставить всю необходимую информацию из файла ЭВМ Б по запросу программы ЭВМ А в режиме реального времени, или, как еще говорят, "оn line". Информация передается, как правило, порциями. Эти порции называются пакетами, каждый из которых имеет адрес ЭВМ - получателя, основное поле - полезную информацию и служебные поля с данными о пакете: размер, контрольную сумму и т.п. Размер пакета обычно 128 или 256 байт, но может быть и другим.

Основное "физическое" средство связи - "физическая среда", - это кабель, проводная связь, телеграфный или голосовой канал тональной частоты - ТЧ-канал и т.д. Кроме того, на рисунке показаны блоки УСа и УСб - устройства сопряжения ЭВМ с каналами связи или сетью. Назначение такого блока - обеспечить интерфейс (стык) ЭВМ с сетью. Примером УС может служить модем. Тип УС зависит от вида связи.

Работа любого устройства сопряжения реализуется в соответствии с некоторым набором правил - протоколом. Протокол - это соглашения (правила) взаимодействия друг с другом коммуникационных компонентов.

Так, например, при передаче сообщений по каналу связи двоичным кодом (в виде последовательности нулей и единиц) протокол интерфейса с каналом связи может потребовать, чтобы двоичная единица в канале связи была предоставлена напряжением +5 В, а двоичный нуль - напряжением - 5 В.

Для каждого вида интерфейса существует свой протокол. В настоящее время практически все организации - разработчики сетевых решений придерживаются общепринятых протоколов и стандартов.

Методы передачи сообщений. Сообщения передаются по каналу связи с использованием одного из трех методов:

симплексный - передача только в одном направлении, используется, например, в телевидении и радиовещании;

полудуплексный - передача в обоих направлениях поочередно, что характерно для телеметрии и факсимильной связи;

дуплексный или полнодуплексный - одновременная передача в обоих направлениях, используется в глобальных сетях.

Метод передачи сообщений определяет тип устройства сопряжения.

Классификация сетей. Существующие сети принято в настоящее время делить в первую очередь по территориальному признаку:

Локальные сети охватывают небольшую территорию с расстоянием между отдельными ЭВМ до 2 км. Обычно такие сети действуют в пределах одного учреждения и могут быть связаны между собой при помощи глобальных сетей.

Глобальные сети охватывают, как правило, большие территории (территорию страны или нескольких стран). ЭВМ располагаются друг от друга на расстоянии до нескольких сотен километров.

Региональные или корпоративные сети существуют в пределах города, района или области. Они являются частью некоторой глобальной сети и особой спецификой по отношению к глобальным не отличаются.

Локальные сети.

Назначение и определение локальной сети (JIC) ЭВМ. Локальная сеть создается, как правило, для совместного использования (в пределах одной организации, фирмы) ресурсов ЭВМ или данных. Например, для коллективного использования дорогостоящих периферийных устройств - лазерных принтеров, графопостроителей и т.д., для коллективного пользования некоторой базой данных или архивов. Она может использоваться даже просто для передачи текстовых сообщений между коллегами-пользователями. Пользователь сети имеет возможность, работая со "своей" ЭВМ, обратиться к любому файлу или к программе на диске другой машины, если, конечно, в сети (для этой ЭВМ) не принято специальных мер ограничения такого доступа.

Итак, локальная сеть - это компьютерная сеть, в которой ЭВМ расположены на небольшом расстоянии друг от друга, при этом не используются средства связи общего пользования (типа телефонных каналов). Эту формулировку можно рассматривать как нестрогое определение локальной сети.

С технической точки зрения локальная сеть есть совокупность ПЭВМ и каналов связи, соединяющих компьютеры в структуру с определенной конфигурацией, а также сетевого программного обеспечения, управляющего работой всей сети. Кроме того, большинство сетей требуют установки в каждую ПЭВМ интерфейсной платы (сетевого адаптера) для организации связи ПЭВМ с сетью.

Топология сети. Так называют конфигурацию сети, или схему соединения объектов в сети. Топология сети - одна из важнейших ее характеристик. Существует "звездная" топология, "кольцевая", "шинная", или "древовидная".

В случае "звездной" конфигурации используется центральная ЭВМ, называемая сервером, к которому подключаются все остальные машины сети. Сервер обеспечивает централизованное управление всей сетью, определяет маршруты передачи сообщений, подключает периферийные устройства, является централизованным хранилищем данных для всей сети. Недостаток этой конфигурации в том, что требуется отдельная машина для управления сетью, которую, как правило, нежелательно использовать для других целей. К тому же отказ сервера ведет к прекращению работы всей сети.

В случае "кольцевой" топологии все ПЭВМ связаны последовательно в одно кольцо и функции сервера распределены между всеми машинами сети. Непосредственный обмен информацией происходит только между соседними машинами.

Недостаток этой конфигурации в том, что при выходе из строя любой ЭВМ работа сети может прерваться. Также сложна процедура расширения сети.

Наиболее надежной и, следовательно, распространенной является схема "общая шина" с древовидной структурой. Любая из машин, включенных в эту сеть, может быть сервером. Кроме того, возможно подключение дополнительных машин без серьезных изменений настройки. Локальные сети со схемой "общая шина" могут быть одноранговыми и иерархическими, т.е. машины в сети могут быть как равноправными, так и зависимыми.

Каналы связи ЛС. Физическая среда передачи информации - основа всей сети. Основная характеристика канала связи - пропускная способность, т.е. максимальная скорость передачи информации. Измеряется в бит/сек, в килобит/сек, мегабит/сек.

В ЛС используются следующие виды каналов связи:

Витая пара - проводной канал связи, содержащий 2 пары скрученных попарно проводников. Обладает малой пропускной способностью (около 1 Мб/с). Однако витая пара так называемой 5-й категории обеспечивает скорость 10 Мбит/сек и даже до 100 Мбит/сек. Расстояние - до 150 м в 1-м случае и до 80-90 м во 2-м.

Коаксиальный кабель (BNC) - обладает средней пропускной способностью, однако он обеспечивает в 1,5-2 раза большую дальность по сравнению с витой парой. Без дополнительного усиления расстояние может быть до 180-200 м, а иногда и чуть более.

Оптоволоконный кабель - обладает самой высокой пропускной способностью. В настоящее время по магистральным каналам из оптоволокна передают данные со скоростью до 40 Гбит/сек, и это не предел.

Страницы: 1, 2, 3


© 2010 BANKS OF РЕФЕРАТ